Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulation-based multi-objective optimization for reconfigurable manufacturing systems: Reconfigurability, manufacturing, simulation, optimization, RMS, multi-objective, knowledge discovery
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Virtual Production Development (VPD))ORCID iD: 0000-0003-3541-9330
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In today’s global and aggressive market system, for manufacturing companies to remain competitive, they must manufacture high-quality products that can be produced at a low cost; they also must respond efficiently to customers’ predictable and unpredictable needs and demand variations. Increasingly shortened product lifecycles, as well as product customization degrees, lead to swift changes in the market that need to be supported by capable and flexible resources able to produce faster and deliver to the market in shorter periods while maintaining a high degree of cost-efficiency. To cope with all these challenges, the setup of production systems needs to shift toward Reconfigurable Manufacturing Systems (RMSs), making production capable of rapidly and economically changing its functionality and capacity to face uncertainties, such as unforeseen market variations and product changes. Despite the advantages of RMSs, designing and managing these systems to achieve a high-efficiency level is a complex and challenging task that requires optimization techniques. Simulation-based optimization (SBO) methods have been proven to improve complex manufacturing systems that are affected by predictable and unpredictable events. However, the use of SBO methods to tackle challenging RMS design and management processes is underdeveloped and rarely involves Multi-Objective Optimization (MOO). Only a few attempts have applied Simulation-Based Multi-Objective Optimization (SMO) to simultaneously deal with multiple conflictive objectives. Furthermore, due to the intrinsic complexity of RMSs, manufacturing organizations that embrace this type of system struggle with areas such as system configuration, number of resources, and task assignment. Therefore, this dissertation contributes to such areas by employing SMO to investigate the design and management of RMSs. The benefits for decision-makers have been demonstrated when SMO is employed toward RMS-related challenges. These benefits have been enhanced by combining SMO with knowledge discovery and Knowledge-Driven Optimization (KDO). This combination has contributed to current research practices proving to be an effective and supportive decision support tool for manufacturing organizations when dealing with RMS challenges.

Abstract [sv]

I dagens globala och högst föränderliga marknad för att vara konkurrenskraftig måste tillverkandebolag producera högkvalitativa produkter som produceras till låga kostnader och möter kunders behov samt är anpassningsbara till marknadens variationer i efterfrågan. De allt kortare produktlivscyklerna och graden av produktanpassning leder till snabba förändringar på marknaden som behöver stödjas av mer kapabla och flexibla produktionsresurser som ökar produktionstakten och leverera till marknaden på kortare tid med bibehållen hög kostnadseffektivitet. För att hantera en sådan utmaning måste produktionssystemens uppbyggnad skifta mot omkonfigurerbara tillverkningssystem (RMS), vilket möjliggör för produktionen att på ett snabbt och kostnadseffektivt sätt ändra sin funktion och kapacitet för att möta oförutsedda marknadsvariationer och produktförändringar. Trots de fördelar som RMS för med sig så är design och nyttjande av dessa system för med en hög effektivitetsgrad en komplex och utmanande uppgift som kräver användning av optimeringstekniker. Metoder för simuleringsbaserad optimering (SBO) har visat sig förbättra komplexa tillverkningssystem som utsätts för planerade och oplanerade händelser. Användningen av SBO-metoder för att ta itu med utmaningen rörande design och effektiv nyttjande av RMS är dock underutvecklad och där nyttjande av flermålsoptimering (MOO) är begränsad. Det har endast skett ett fåtal försök att tillämpa simulering baserad flermålsoptimering (SMO) för att hantera flera konflikterande mål. På grund av den komplexet i RMS kämpar tillverkningsorganisationer som om-famnar den här typen av system med områden som systemkonfiguration, antal resurser och uppgiftstilldelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka designen och hanteringen av RMS. Fördelarna för beslutsfattare har visat sig när SMO används mot RMS-utmaningarna. Dessa fördelar har förbättrats genom att kombinera SMO med kunskapsupptäckt och kunskapsdriven optimering (KDO). Denna kombination har bidragit till nuvarande forskningspraktiker och visat sig vara ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar. På grund av RMS inneboende komplexitet, de tillverkande organisationer som arbetar med denna typ av system möter oftast utmaningar rörande systemkonfiguration, antal resurser och uppgiftsfördelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka design och effektive nyttande av RMS system. Fördelarna med att nyttja SMO för RMS utmaning har demonstrerats för beslutsfattare. Fördelarna har en mer utvecklats genom att kombinera SMO med kunskaps extrahering och KDO. Kombinationen av dessa tekniker har bidragit till den forskning som presenteras här som visat sig vara IV ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar.

Place, publisher, year, edition, pages
Skövde: University of Skövde , 2023. , p. xv, 78
Series
Dissertation Series ; 51
National Category
Production Engineering, Human Work Science and Ergonomics Software Engineering Other Mechanical Engineering Other Engineering and Technologies not elsewhere specified Embedded Systems
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
URN: urn:nbn:se:his:diva-23113ISBN: 978-91-987906-5-8 (print)OAI: oai:DiVA.org:his-23113DiVA, id: diva2:1789136
Public defence
2023-09-08, Insikten, Kanikegränd 3B, Skövde, 09:30 (English)
Opponent
Supervisors
Part of project
Virtual factories with knowledge-driven optimization (VF-KDO), Knowledge FoundationAvailable from: 2023-08-18 Created: 2023-08-18 Last updated: 2024-03-25Bibliographically approved
List of papers
1. Simulation-based multi-objective optimization for reconfigurable manufacturing system configurations analysis
Open this publication in new window or tab >>Simulation-based multi-objective optimization for reconfigurable manufacturing system configurations analysis
Show others...
2020 (English)In: Proceedings of the 2020 Winter Simulation Conference / [ed] K.-H. Bae; B. Feng; S. Kim; S. Lazarova-Molnar; Z. Zheng; T. Roeder; R. Thiesing, IEEE, 2020, p. 1527-1538Conference paper, Published paper (Refereed)
Abstract [en]

The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical insight for production engineers and managers responsible for production system configuration.

Place, publisher, year, edition, pages
IEEE, 2020
Series
Proceedings of the Winter Simulation Conference, ISSN 1558-4305, E-ISSN 0891-7736
National Category
Other Engineering and Technologies
Research subject
Production and Automation Engineering; VF-KDO
Identifiers
urn:nbn:se:his:diva-19497 (URN)10.1109/WSC48552.2020.9383902 (DOI)000679196301045 ()2-s2.0-85103919098 (Scopus ID)978-1-7281-9499-8 (ISBN)978-1-7281-9500-1 (ISBN)
Conference
2020 Winter Simulation Conference - Virtual December 14, 2020 - December 18, 2020
Note

©2020 IEEE

Available from: 2021-02-24 Created: 2021-02-24 Last updated: 2024-06-19Bibliographically approved
2. Optimizing reconfigurable manufacturing systems: A Simulation-based Multi-objective Optimization approach
Open this publication in new window or tab >>Optimizing reconfigurable manufacturing systems: A Simulation-based Multi-objective Optimization approach
2021 (English)In: Procedia CIRP, E-ISSN 2212-8271, Vol. 104, p. 1837-1842Article in journal (Refereed) Published
Abstract [en]

Application of reconfigurable manufacturing systems (RMS) plays a significant role in manufacturing companies’ success in the current fiercely competitive market. Despite the RMS’s advantages, designing these systems to achieve a high-efficiency level is a complex and challenging task that requires the use of optimization techniques. This study proposes a simulation-based optimization approach for optimal allocation of work tasks and resources (i.e., machines) to workstations. Three conflictive objectives, namely maximizing the throughput, minimizing the buffers’ capacity, and minimizing the number of machines, are optimized simultaneously while considering the system’s stochastic behavior to achieve the desired system’s configuration.

Place, publisher, year, edition, pages
Elsevier, 2021
Keywords
Simulation-based Optimization, Manufacturing Systems, Reconfigurability, Multi-Objective
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
VF-KDO; Production and Automation Engineering
Identifiers
urn:nbn:se:his:diva-20724 (URN)10.1016/j.procir.2021.11.310 (DOI)2-s2.0-85121606978 (Scopus ID)
Conference
54th CIRP Conference on Manufacturing Systems 2021, CMS 2021, Patras, 22 September 2021 through 24 September 2021, Code 175290
Funder
Knowledge Foundation
Note

CC BY-NC-ND 4.0

Corresponding author Tel.: +46-500-448-586. E-mail address: carlos.alberto.barrera.diaz@his.se

Edited by Dimitris Mourtzis

Available from: 2021-11-29 Created: 2021-11-29 Last updated: 2024-09-04Bibliographically approved
3. Enabling CPS and simulation-based multi-objective optimisation for material handling of reconfigurable manufacturing systems
Open this publication in new window or tab >>Enabling CPS and simulation-based multi-objective optimisation for material handling of reconfigurable manufacturing systems
Show others...
2023 (English)In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015Article in journal (Other academic) Submitted
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Virtual Production Development (VPD)
Identifiers
urn:nbn:se:his:diva-23114 (URN)
Funder
Vinnova
Note

The authors would like to acknowledge the support of Swedish Innovation Agency (VINNOVA) and its funding program, Produktion2030. This study is part of the Explainable and Learning Production Logistics by Artificial Intelligence (EXPLAIN) project.

Available from: 2023-08-18 Created: 2023-08-18 Last updated: 2023-09-11Bibliographically approved
4. Optimizing Reconfigurable Manufacturing Systems for Fluctuating Production Volumes: A Simulation-Based Multi-Objective Approach
Open this publication in new window or tab >>Optimizing Reconfigurable Manufacturing Systems for Fluctuating Production Volumes: A Simulation-Based Multi-Objective Approach
2021 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 9, p. 144195-144210Article in journal (Refereed) Published
Abstract [en]

In today’s global and volatile market, manufacturing enterprises are subjected to intense global competition, increasingly shortened product lifecycles and increased product customization and tailoring while being pressured to maintain a high degree of cost-efficiency. As a consequence, production organizations are required to introduce more new product models and variants into existing production setups, leading to more frequent ramp-up and ramp-down scenarios when transitioning from an outgoing product to a new one. In order to cope with such as challenge, the setup of the production systems needs to shift towards reconfigurable manufacturing systems (RMS), making production capable of changing its function and capacity according to the product and customer demand. Consequently, this study presents a simulation-based multi-objective optimization approach for system re-configuration of multi-part flow lines subjected to scalable capacities, which addresses the assignment of the tasks to workstations and buffer allocation for simultaneously maximizing throughput and minimizing total buffer capacity to cope with fluctuating production volumes. To this extent, the results from the study demonstrate the benefits that decision-makers could gain, particularly when they face trade-off decisions inherent in today’s manufacturing industry by adopting a Simulation-Based Multi-Objective Optimization (SMO) approach.

Place, publisher, year, edition, pages
IEEE, 2021
Keywords
Multi-objective optimization, reconfigurable manufacturing systems, simulation-based optimization, genetic algorithm
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Production and Automation Engineering; VF-KDO
Identifiers
urn:nbn:se:his:diva-20674 (URN)10.1109/ACCESS.2021.3122239 (DOI)000712563100001 ()2-s2.0-85118540679 (Scopus ID)
Funder
Knowledge Foundation
Note

CC BY 4.0

This work was partially supported by the Knowledge Foundation (KKS), Sweden, through the funding of the research profile VirtualFactories with Knowledge-Driven Optimization (VF-KDO) (2018-2026). 

Available from: 2021-10-29 Created: 2021-10-29 Last updated: 2024-06-19Bibliographically approved
5. Enabling Knowledge Discovery from Simulation-Based Multi-Objective Optimization in Reconfigurable Manufacturing Systems
Open this publication in new window or tab >>Enabling Knowledge Discovery from Simulation-Based Multi-Objective Optimization in Reconfigurable Manufacturing Systems
2022 (English)In: Proceedings of the 2022 Winter Simulation Conference / [ed] B. Feng; G. Pedrielli; Y. Peng; S. Shashaani; E. Song; C. G. Corlu; L. H. Lee; E. P. Chew; T. Roeder; P. Lendermann, IEEE, 2022, p. 1794-1805Conference paper, Published paper (Refereed)
Abstract [en]

Due to the nature of today's manufacturing industry, where enterprises are subjected to frequent changes and volatile markets, reconfigurable manufacturing systems (RMS) are crucial when addressing ramp-up and ramp-down scenarios derived from, among other challenges, increasingly shortened product lifecycles. Applying simulation-based optimization techniques to their designs under different production volume scenarios has become valuable when RMS becomes more complex. Apart from proposing the optimal solutions subject to various production volume changes, decision-makers can extract propositional knowledge to better understand the RMS design and support their decision-making through a knowledge discovery method by combining simulation-based optimization and data mining techniques. In particular, this study applies a novel flexible pattern mining algorithm to conduct post-optimality analysis on multi-dimensional, multi-objective optimization datasets from an industrial-inspired application to discover the rules regarding how the tasks are assigned to the workstations constitute reasonable solutions for scalable RMS. 

Place, publisher, year, edition, pages
IEEE, 2022
Series
Proceedings of the Winter Simulation Conference, ISSN 0891-7736, E-ISSN 1558-4305
Keywords
Computer aided manufacturing, Data mining, Decision making, Life cycle, Enterprise IS, Manufacturing industries, Multi-objectives optimization, Optimization techniques, Product life cycles, Production volumes, Ramp up, Reconfigurable manufacturing system, Simulation-based optimizations, Volatile markets, Multiobjective optimization
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-22271 (URN)10.1109/WSC57314.2022.10015335 (DOI)000991872901067 ()2-s2.0-85147454505 (Scopus ID)978-1-6654-7661-4 (ISBN)978-1-6654-7662-1 (ISBN)
Conference
2022 Winter Simulation Conference, W.S.C. 2022 Guilin 11 December 2022 through 14 December 2022
Funder
Knowledge Foundation
Note

© 2022 IEEE

Intelligent Production Systems Division, University of Skövde

The authors gratefully acknowledge the Knowledge Foundation (KK-Stiftelsen), Sweden, for their upport and provision of research funding through the research profile Virtual Factories Knowledge-Driven Optimization (VF-KDO) at the University of Skövde, Sweden, in which this work is a part of it.

Available from: 2023-02-16 Created: 2023-02-16 Last updated: 2023-09-01Bibliographically approved
6. An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems
Open this publication in new window or tab >>An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems
Show others...
2023 (English)In: Mathematics, ISSN 2227-7390, Vol. 11, no 6, article id 1527Article in journal (Refereed) Published
Abstract [en]

In today’s uncertain and competitive market, where manufacturing enterprises are subjected to increasingly shortened product lifecycles and frequent volume changes, reconfigurable manufacturing system (RMS) applications play significant roles in the success of the manufacturing industry. Despite the advantages offered by RMSs, achieving high efficiency constitutes a challenging task for stakeholders and decision makers when they face the trade-off decisions inherent in these complex systems. This study addresses work task and resource allocations to workstations together with buffer capacity allocation in an RMS. The aim is to simultaneously maximize throughput and to minimize total buffer capacity under fluctuating production volumes and capacity changes while considering the stochastic behavior of the system. An enhanced simulation-based multi-objective optimization (SMO) approach with customized simulation and optimization components is proposed to address the abovementioned challenges. Apart from presenting the optimal solutions subject to volume and capacity changes, the proposed approach supports decision makers with knowledge discovery to further understand RMS design. In particular, this study presents a customized SMO approach combined with a novel flexible pattern mining method for optimizing an RMS and conducts post-optimal analyses. To this extent, this study demonstrates the benefits of applying SMO and knowledge discovery methods for fast decision support and production planning of an RMS.

Place, publisher, year, edition, pages
MDPI, 2023
Keywords
reconfigurable manufacturing system, simulation, multi-objective optimization, knowledge discovery
National Category
Production Engineering, Human Work Science and Ergonomics Computer Sciences
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-22329 (URN)10.3390/math11061527 (DOI)000960178700001 ()2-s2.0-85151391170 (Scopus ID)
Funder
Knowledge Foundation, 2018-0011
Note

CC BY 4.0

(This article belongs to the Special Issue Multi-Objective Optimization and Decision Support Systems)

Received: 15 February 2023 / Revised: 15 March 2023 / Accepted: 17 March 2023 / Published: 21 March 2023

Correspondence: carlos.alberto.barrera.diaz@his.se

The authors thank the Knowledge Foundation, Sweden (KKS) for funding this research through the KKS Profile Virtual Factories with Knowledge-Driven Optimization, VF-KDO, grant number 2018-0011.

Available from: 2023-03-21 Created: 2023-03-21 Last updated: 2024-05-14Bibliographically approved
7. Knowledge-Driven Multi-Objective Optimization for Reconfigurable Manufacturing Systems
Open this publication in new window or tab >>Knowledge-Driven Multi-Objective Optimization for Reconfigurable Manufacturing Systems
Show others...
2022 (English)In: Mathematical and Computational Applications, ISSN 1300-686X, E-ISSN 2297-8747, Vol. 27, no 6, article id 106Article in journal (Refereed) Published
Abstract [en]

Current market requirements force manufacturing companies to face production changes more often than ever before. Reconfigurable manufacturing systems (RMS) are considered a key enabler in today's manufacturing industry to cope with such dynamic and volatile markets. The literature confirms that the use of simulation-based multi-objective optimization offers a promising approach that leads to improvements in RMS. However, due to the dynamic behavior of real-world RMS, applying conventional optimization approaches can be very time-consuming, specifically when there is no general knowledge about the quality of solutions. Meanwhile, Pareto-optimal solutions may share some common design principles that can be discovered with data mining and machine learning methods and exploited by the optimization. In this study, the authors investigate a novel knowledge-driven optimization (KDO) approach to speed up the convergence in RMS applications. This approach generates generalized knowledge from previous scenarios, which is then applied to improve the efficiency of the optimization of new scenarios. This study applied the proposed approach to a multi-part flow line RMS that considers scalable capacities while addressing the tasks assignment to workstations and the buffer allocation problems. The results demonstrate how a KDO approach leads to convergence rate improvements in a real-world RMS case.

Place, publisher, year, edition, pages
MDPI, 2022
Keywords
multi-objective optimization, knowledge discovery, reconfigurable manufacturing system, simulation
National Category
Production Engineering, Human Work Science and Ergonomics Computer Sciences
Research subject
Production and Automation Engineering; VF-KDO
Identifiers
urn:nbn:se:his:diva-22194 (URN)10.3390/mca27060106 (DOI)000904384800001 ()
Funder
Knowledge Foundation, 2018-0011
Note

CC BY 4.0

Correspondence: henrik.smedberg@his.se

This work was funded by the Knowledge Foundation (KKS), Sweden, through the KKS Profile Virtual Factories with Knowledge-Driven Optimization, VF-KDO, Grant No. 2018-0011.

(This article belongs to the Special Issue Evolutionary Multi-objective Optimization: An Honorary Issue Dedicated to Professor Kalyanmoy Deb)

Available from: 2023-01-19 Created: 2023-01-19 Last updated: 2023-09-01Bibliographically approved

Open Access in DiVA

fulltext(48690 kB)485 downloads
File information
File name FULLTEXT01.pdfFile size 48690 kBChecksum SHA-512
92e69c788322c8f644ea2273a00c2fa2ea30551418b27d9a490db905041a2bdf9e5e5923f771c056f7cef72e22f2eca1280b511a18d98047e84b8d030e48be39
Type fulltextMimetype application/pdf

Authority records

Barrera Diaz, Carlos Alberto

Search in DiVA

By author/editor
Barrera Diaz, Carlos Alberto
By organisation
School of Engineering ScienceVirtual Engineering Research Environment
Production Engineering, Human Work Science and ErgonomicsSoftware EngineeringOther Mechanical EngineeringOther Engineering and Technologies not elsewhere specifiedEmbedded Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 495 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 775 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf