Open this publication in new window or tab >>Show others...
2023 (English)In: Mathematics, ISSN 2227-7390, Vol. 11, no 6, article id 1527Article in journal (Refereed) Published
Abstract [en]
In today’s uncertain and competitive market, where manufacturing enterprises are subjected to increasingly shortened product lifecycles and frequent volume changes, reconfigurable manufacturing system (RMS) applications play significant roles in the success of the manufacturing industry. Despite the advantages offered by RMSs, achieving high efficiency constitutes a challenging task for stakeholders and decision makers when they face the trade-off decisions inherent in these complex systems. This study addresses work task and resource allocations to workstations together with buffer capacity allocation in an RMS. The aim is to simultaneously maximize throughput and to minimize total buffer capacity under fluctuating production volumes and capacity changes while considering the stochastic behavior of the system. An enhanced simulation-based multi-objective optimization (SMO) approach with customized simulation and optimization components is proposed to address the abovementioned challenges. Apart from presenting the optimal solutions subject to volume and capacity changes, the proposed approach supports decision makers with knowledge discovery to further understand RMS design. In particular, this study presents a customized SMO approach combined with a novel flexible pattern mining method for optimizing an RMS and conducts post-optimal analyses. To this extent, this study demonstrates the benefits of applying SMO and knowledge discovery methods for fast decision support and production planning of an RMS.
Place, publisher, year, edition, pages
MDPI, 2023
Keywords
reconfigurable manufacturing system, simulation, multi-objective optimization, knowledge discovery
National Category
Production Engineering, Human Work Science and Ergonomics Computer Sciences
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-22329 (URN)10.3390/math11061527 (DOI)000960178700001 ()2-s2.0-85151391170 (Scopus ID)
Funder
Knowledge Foundation, 2018-0011
Note
CC BY 4.0
(This article belongs to the Special Issue Multi-Objective Optimization and Decision Support Systems)
Received: 15 February 2023 / Revised: 15 March 2023 / Accepted: 17 March 2023 / Published: 21 March 2023
Correspondence: carlos.alberto.barrera.diaz@his.se
The authors thank the Knowledge Foundation, Sweden (KKS) for funding this research through the KKS Profile Virtual Factories with Knowledge-Driven Optimization, VF-KDO, grant number 2018-0011.
2023-03-212023-03-212024-05-14Bibliographically approved