Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt213",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1182",{id:"formSmash:j_idt1182",widgetVar:"widget_formSmash_j_idt1182",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopusRelated item: Correction to: "Regularized Laplacian determinants of self-similar fractals". doi:10.1007/s11005-017-1027-y
#### Authority records

Tsougkas, Konstantinos
#### Search in DiVA

##### By author/editor

Tsougkas, Konstantinos
##### In the same journal

Letters in Mathematical Physics
On the subject

Mathematics
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1580",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[4,3,5,3,2,2,2,3,9,2]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1788066'}],ticks:["Oct -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24","Jun -24","Jul -24","Aug -24","Sep -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 51 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1711",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt179",{id:"formSmash:upper:j_idt179",widgetVar:"widget_formSmash_upper_j_idt179",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt182_j_idt189",{id:"formSmash:upper:j_idt182:j_idt189",widgetVar:"widget_formSmash_upper_j_idt182_j_idt189",target:"formSmash:upper:j_idt182:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Regularized Laplacian determinants of self-similar fractalsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)In: Letters in Mathematical Physics, ISSN 0377-9017, E-ISSN 1573-0530, Vol. 108, no 6, p. 1563-1579Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer Nature, 2018. Vol. 108, no 6, p. 1563-1579
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:his:diva-23099DOI: 10.1007/s11005-017-1027-yISI: 000431317300009Scopus ID: 2-s2.0-85034651468OAI: oai:DiVA.org:his-23099DiVA, id: diva2:1788066
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt574",{id:"formSmash:j_idt574",widgetVar:"widget_formSmash_j_idt574",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt580",{id:"formSmash:j_idt580",widgetVar:"widget_formSmash_j_idt580",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt586",{id:"formSmash:j_idt586",widgetVar:"widget_formSmash_j_idt586",multiple:true});
##### Funder

Uppsala University
##### Note

##### In thesis

We study the spectral zeta functions of the Laplacian on fractal sets which are locally self-similar fractafolds, in the sense of Strichartz. These functions are known to meromorphically extend to the entire complex plane, and the locations of their poles, sometimes referred to as complex dimensions, are of special interest. We give examples of locally self-similar sets such that their complex dimensions are not on the imaginary axis, which allows us to interpret their Laplacian determinant as the regularized product of their eigenvalues. We then investigate a connection between the logarithm of the determinant of the discrete graph Laplacian and the regularized one.

CC BY 4.0

Correction in: Letters in Mathematical Physics, Volume 108, April 2018, pages 1581–1582. doi:10.1007/s11005-017-1027-y

We thank Professors Robert S. Strichartz, Gerald Dunne and Peter Grabner for helpful discussions and Anders Karlsson for suggesting the problem. The last-named author would also like to thank the Mathematics Department at the University of Connecticut for the hospitality during his research stay. Research of the first named author is supported by the Simons Foundation (via a Collaboration Grant for Mathematicians #523544). Research of the second-named author is supported in part by NSF Grant DMS-1613025.

Available from: 2023-08-15 Created: 2023-08-15 Last updated: 2023-08-15Bibliographically approved1. Combinatorial and analytical problems for fractals and their graph approximations$(function(){PrimeFaces.cw("OverlayPanel","overlay1788082",{id:"formSmash:j_idt946:0:j_idt951",widgetVar:"overlay1788082",target:"formSmash:j_idt946:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1621",{id:"formSmash:j_idt1621",widgetVar:"widget_formSmash_j_idt1621",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1693",{id:"formSmash:lower:j_idt1693",widgetVar:"widget_formSmash_lower_j_idt1693",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1694_j_idt1696",{id:"formSmash:lower:j_idt1694:j_idt1696",widgetVar:"widget_formSmash_lower_j_idt1694_j_idt1696",target:"formSmash:lower:j_idt1694:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});