Multi-step estimators and shrinkage effect in time series models
2024 (English)In: Computational statistics (Zeitschrift), ISSN 0943-4062, E-ISSN 1613-9658, Vol. 39, no 3, p. 1203-1239Article in journal (Refereed) Published
Abstract [en]
Many modern statistical models are used for both insight and prediction when applied to data. When models are used for prediction one should optimise parameters through a prediction error loss function. Estimation methods based on multiple steps ahead forecast errors have been shown to lead to more robust and less biased estimates of parameters. However, a plausible explanation of why this is the case is lacking. In this paper, we provide this explanation, showing that the main benefit of these estimators is in a shrinkage effect, happening in univariate models naturally. However, this can introduce a series of limitations, due to overly aggressive shrinkage. We discuss the predictive likelihoods related to the multistep estimators and demonstrate what their usage implies to time series models. To overcome the limitations of the existing multiple steps estimators, we propose the Geometric Trace Mean Squared Error, demonstrating its advantages. We conduct a simulation experiment showing how the estimators behave with different sample sizes and forecast horizons. Finally, we carry out an empirical evaluation on real data, demonstrating the performance and advantages of the estimators. Given that the underlying process to be modelled is often unknown, we conclude that the shrinkage achieved by the GTMSE is a competitive alternative to conventional ones.
Place, publisher, year, edition, pages
Springer Nature, 2024. Vol. 39, no 3, p. 1203-1239
Keywords [en]
ARIMA, ETS, Multi-step estimators, Shrinkage, Time series analysis
National Category
Control Engineering
Research subject
Skövde Artificial Intelligence Lab (SAIL)
Identifiers
URN: urn:nbn:se:his:diva-22982DOI: 10.1007/s00180-023-01377-xISI: 001013065600001Scopus ID: 2-s2.0-85162849847OAI: oai:DiVA.org:his-22982DiVA, id: diva2:1780550
Note
CC BY 4.0
Published: 24 June 2023
Springer
Correspondence: Ivan Svetunkov; Department of Management Science, Lancaster University Management School, Lancaster, Lancashire, LA1 4YX, United Kingdom; email: i.svetunkov@lancaster.ac.uk
2023-07-062023-07-062024-06-13Bibliographically approved