Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Jämförande analys av frågor för enskilda och flera geometrityper för hämtning av geospatiala data i MySQL och MongoDB: Bedömning av frågeprestanda för platsbaserad information i MySQL och MongoDB
University of Skövde, School of Informatics.
2023 (Swedish)Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesisAlternative title
Comparative analysis of single and multiple geometric type queries for geospatial data retrieval in MySQL and MongoDB : Assessing fetch query performance for location-based information in MySQL and MongoDB (English)
Abstract [en]

The use of databases for managing spatial data is widespread due to the efficiency of traditional SQL databases like Azure SQL. However, the exponential growth of data from sources like social media has led to the popularity of NoSQL databases such as MongoDB that handle large volumes of data effectively. NoSQL databases, including MongoDB, have built-in support for geospatial queries, making them suitable for managing geospatial data. Geospatial data combines geometric and geographic information and is represented by spatial datatypes like Point, LineString, and Polygon. MySQL and MongoDB both support geospatial data, but limited studies are comparing their performance in geospatial queries. An experiment was conducted to compare the fetch speed of geospatial data in these databases. The results were analyzed using graphs and related studies to draw conclusions, which showed that MongoDB performed slower fetch requests than MySQL. Future studies can use more data points and different queries.

Place, publisher, year, edition, pages
2023. , p. 45, iii
Keywords [en]
MongoDB, MySQL, geospatial data, single-geometry types, multiple-geometry types
National Category
Information Systems, Social aspects
Identifiers
URN: urn:nbn:se:his:diva-22966OAI: oai:DiVA.org:his-22966DiVA, id: diva2:1779909
Subject / course
Informationsteknologi
Educational program
Web Developer - Programming
Examiners
Available from: 2023-07-05 Created: 2023-07-05 Last updated: 2023-07-05Bibliographically approved

Open Access in DiVA

fulltext(1480 kB)145 downloads
File information
File name FULLTEXT01.pdfFile size 1480 kBChecksum SHA-512
4efcb29c0567d90b8de572447f864ac8a0aef9c91ac6c5b5c2e18540efd14911331af691b6cf3f08e5c209415711b9be0274418b04c8b3e96132f797b9dedb8e
Type fulltextMimetype application/pdf

By organisation
School of Informatics
Information Systems, Social aspects

Search outside of DiVA

GoogleGoogle Scholar
Total: 145 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 194 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf