Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring the diversity and distribution of Sclerotinia sclerotiorum in oilseed rape through molecular techniques
University of Skövde, School of Bioscience.
2023 (English)Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Sclerotinia sclerotiorum, a fungus with a broad host range, causes plant diseases, while its closely related counterpart, Sclerotinia subarctica, has a more limited host range and prefers colder environments. Sclerotinia stem rot is a disease caused by the fungus, leading to economic losses for farmers. In this study, the aim was to utilize PCR and Sanger sequencing to identify and differentiate various isolates of S. sclerotiorum and S. subarctica obtained from sclerotia collected in eight fields, while also employing nanopore sequencing to examine oilseed rape leaves from three distinct fields for the detection of fungal pathogens. To confirm the identification of S. sclerotiorum or S. subarctica isolates, the ITS regions of ribosomal DNA from the leaves were amplified using the primer pairs ITS1Catta and ITS4ngsUni for targeted amplification, and ITS2AF and ITS2AR for amplification of the rRNA ITS region from the sclerotia. Based on the Sanger sequencing results from sclerotia samples, the study determined that S. sclerotiorum was the identified fungi in all of the samples. Nanopore sequencing was performed on the PCR amplified fungal ITS region from leaves, and the resulting data was analyzed using Kraken2 and UNITE databases. The analysis using Kraken2 and UNITE databases revealed successful identification of fungal sequences, with S. sclerotiorum not detected but other plant-infecting fungi identified. Ascomycota and Saccharomycodes ludwigii were predominant using Kraken2, while Streptophyta and Brassica napus were abundant using UNITE. Molecular-based methods like fungal ITS sequencing are essential for accurate identification of plant-infecting fungi.

Place, publisher, year, edition, pages
2023. , p. 36
National Category
Medical Bioscience
Identifiers
URN: urn:nbn:se:his:diva-22871OAI: oai:DiVA.org:his-22871DiVA, id: diva2:1776950
Subject / course
Bioscience
Supervisors
Examiners
Available from: 2023-06-28 Created: 2023-06-28 Last updated: 2023-06-28Bibliographically approved

Open Access in DiVA

fulltext(1741 kB)179 downloads
File information
File name FULLTEXT01.pdfFile size 1741 kBChecksum SHA-512
9f57afbec736d8b443e9134ee092451cba45b9c09d10dba2efaadcab9436ede07edf3325334e017bbdc3bf3ed02f2729ae4d4b79407be7b38d28bf5c6ef47310
Type fulltextMimetype application/pdf

By organisation
School of Bioscience
Medical Bioscience

Search outside of DiVA

GoogleGoogle Scholar
Total: 179 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 419 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf