Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Klassificering av latent diffusion genererade bilder: En metod som använder ett konvolutionellt neuralt nätverk för att klassificera latent diffusion genererade bilder
University of Skövde, School of Informatics.
University of Skövde, School of Informatics.
University of Skövde, School of Informatics.
2023 (Swedish)Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesisAlternative title
Classification of Latent Diffusion Generated Images : An approach using a convolutional neural network to classify latent diffusion generated images (English)
Abstract [en]

Previous studies have used convolutional neural networks (CNN) to classify synthetic images created by generative adversarial networks (GANs) to confirm images as either being synthetic or natural. Similar to other research, this thesis will cover the classification of synthetic images witha CNN. However, instead of classifying images created by GANs, a latent diffusion based generator is covered instead. This comparative study gathered results from the performance of botha human baseline as well as a CNN’s ability to classify images generated by stable diffusion and real images created by or taken by humans.The results from this study show that the CNN created greatly outperformed the human baseline when classifying the data sets over multipledifferent image domains. 

Place, publisher, year, edition, pages
2023. , p. 59
Keywords [en]
Diffusion, AI, Deep learning, Image, CNN, ResNet50
National Category
Information Systems
Identifiers
URN: urn:nbn:se:his:diva-22674OAI: oai:DiVA.org:his-22674DiVA, id: diva2:1765784
Subject / course
Informationsteknologi
Educational program
Computer Science - Specialization in Systems Development
Supervisors
Examiners
Available from: 2023-06-12 Created: 2023-06-12 Last updated: 2023-06-12Bibliographically approved

Open Access in DiVA

fulltext(11815 kB)243 downloads
File information
File name FULLTEXT01.pdfFile size 11815 kBChecksum SHA-512
a76a7ef718270631a9b547c06db2e4098eb0cce3b3146d7dfb213d733284f6362f0889e3244eb4fd5c0bc14514184916c60b6fa558ee63686f449a93d384cafd
Type fulltextMimetype application/pdf

By organisation
School of Informatics
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 243 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 545 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf