Vibration frequencies in machining may be employed for calculation of natural frequencies of the dominant modes in chatter and selection of chatter-free spindle speeds with large material removal rates. In this approach, it is important to investigate the relationship between the vibration frequencies, the natural frequencies, spindle speeds and depth of cuts for both stable and unstable cutting conditions. In this paper, the dominant poles of the closed loop time delay differential equation of a milling operation are calculated by successive sectioning of the complex plane and using Cauchy's argument principle. Vibration frequency and damping ratio of the closed loop machining system for each cutting condition is calculated based on the position of the dominant pole on the complex plane which provides 3D plots of the vibration frequency and closed loop damping ratio over any range of depth of cuts and spindle speeds. Finally, the findings of the analytical approach are compared to a machining experiment and a time domain simulation and differences and similarities in their predictions are discussed.
The research presented in this paper has been supported byInnKa, an ERDF project. The contribution is greatly appreciated. The 3D Matlab figures (Figs. 4 and 7) were transformed and prepared using the plot2svg script written by Jürg Schwizer.