Titanium's Ti6Al4V, alloy is an important material with a wide range of applications in the aerospace industry. Due to its high strength, machining this material for desired quality at high material removal rate is challenging and may lead to high tool wear rate. As a result, this material may be machined with worn tools and the effects of tool wear on machining quality need to be investigated. In this experimental paper, it is shown how drills of various wear levels affect the cutting forces, surface quality and burr formation. Furthermore, it is shown that high cutting forces and high plastic deformation, along with high temperatures that arise in cutting with worn tools may lead to initiation of microscopic cracks in the workpiece material in proximity of the drilling zone.
CC BY-NC-ND 3.0