Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Virtual Production Development)ORCID iD: 0000-0003-3541-9330
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Virtual Production Development)ORCID iD: 0000-0001-6280-1848
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Virtual Production Development)ORCID iD: 0000-0003-3124-0077
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Virtual Production Development)ORCID iD: 0000-0002-0880-2572
Show others and affiliations
2023 (English)In: Mathematics, ISSN 2227-7390, Vol. 11, no 6, article id 1527Article in journal (Refereed) Published
Abstract [en]

In today’s uncertain and competitive market, where manufacturing enterprises are subjected to increasingly shortened product lifecycles and frequent volume changes, reconfigurable manufacturing system (RMS) applications play significant roles in the success of the manufacturing industry. Despite the advantages offered by RMSs, achieving high efficiency constitutes a challenging task for stakeholders and decision makers when they face the trade-off decisions inherent in these complex systems. This study addresses work task and resource allocations to workstations together with buffer capacity allocation in an RMS. The aim is to simultaneously maximize throughput and to minimize total buffer capacity under fluctuating production volumes and capacity changes while considering the stochastic behavior of the system. An enhanced simulation-based multi-objective optimization (SMO) approach with customized simulation and optimization components is proposed to address the abovementioned challenges. Apart from presenting the optimal solutions subject to volume and capacity changes, the proposed approach supports decision makers with knowledge discovery to further understand RMS design. In particular, this study presents a customized SMO approach combined with a novel flexible pattern mining method for optimizing an RMS and conducts post-optimal analyses. To this extent, this study demonstrates the benefits of applying SMO and knowledge discovery methods for fast decision support and production planning of an RMS.

Place, publisher, year, edition, pages
MDPI, 2023. Vol. 11, no 6, article id 1527
Keywords [en]
reconfigurable manufacturing system, simulation, multi-objective optimization, knowledge discovery
National Category
Production Engineering, Human Work Science and Ergonomics Computer Sciences
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
URN: urn:nbn:se:his:diva-22329DOI: 10.3390/math11061527ISI: 000960178700001Scopus ID: 2-s2.0-85151391170OAI: oai:DiVA.org:his-22329DiVA, id: diva2:1744990
Part of project
Virtual factories with knowledge-driven optimization (VF-KDO), Knowledge Foundation
Funder
Knowledge Foundation, 2018-0011
Note

CC BY 4.0

(This article belongs to the Special Issue Multi-Objective Optimization and Decision Support Systems)

Received: 15 February 2023 / Revised: 15 March 2023 / Accepted: 17 March 2023 / Published: 21 March 2023

Correspondence: carlos.alberto.barrera.diaz@his.se

The authors thank the Knowledge Foundation, Sweden (KKS) for funding this research through the KKS Profile Virtual Factories with Knowledge-Driven Optimization, VF-KDO, grant number 2018-0011.

Available from: 2023-03-21 Created: 2023-03-21 Last updated: 2024-05-14Bibliographically approved
In thesis
1. Simulation-based multi-objective optimization for reconfigurable manufacturing systems: Reconfigurability, manufacturing, simulation, optimization, RMS, multi-objective, knowledge discovery
Open this publication in new window or tab >>Simulation-based multi-objective optimization for reconfigurable manufacturing systems: Reconfigurability, manufacturing, simulation, optimization, RMS, multi-objective, knowledge discovery
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In today’s global and aggressive market system, for manufacturing companies to remain competitive, they must manufacture high-quality products that can be produced at a low cost; they also must respond efficiently to customers’ predictable and unpredictable needs and demand variations. Increasingly shortened product lifecycles, as well as product customization degrees, lead to swift changes in the market that need to be supported by capable and flexible resources able to produce faster and deliver to the market in shorter periods while maintaining a high degree of cost-efficiency. To cope with all these challenges, the setup of production systems needs to shift toward Reconfigurable Manufacturing Systems (RMSs), making production capable of rapidly and economically changing its functionality and capacity to face uncertainties, such as unforeseen market variations and product changes. Despite the advantages of RMSs, designing and managing these systems to achieve a high-efficiency level is a complex and challenging task that requires optimization techniques. Simulation-based optimization (SBO) methods have been proven to improve complex manufacturing systems that are affected by predictable and unpredictable events. However, the use of SBO methods to tackle challenging RMS design and management processes is underdeveloped and rarely involves Multi-Objective Optimization (MOO). Only a few attempts have applied Simulation-Based Multi-Objective Optimization (SMO) to simultaneously deal with multiple conflictive objectives. Furthermore, due to the intrinsic complexity of RMSs, manufacturing organizations that embrace this type of system struggle with areas such as system configuration, number of resources, and task assignment. Therefore, this dissertation contributes to such areas by employing SMO to investigate the design and management of RMSs. The benefits for decision-makers have been demonstrated when SMO is employed toward RMS-related challenges. These benefits have been enhanced by combining SMO with knowledge discovery and Knowledge-Driven Optimization (KDO). This combination has contributed to current research practices proving to be an effective and supportive decision support tool for manufacturing organizations when dealing with RMS challenges.

Abstract [sv]

I dagens globala och högst föränderliga marknad för att vara konkurrenskraftig måste tillverkandebolag producera högkvalitativa produkter som produceras till låga kostnader och möter kunders behov samt är anpassningsbara till marknadens variationer i efterfrågan. De allt kortare produktlivscyklerna och graden av produktanpassning leder till snabba förändringar på marknaden som behöver stödjas av mer kapabla och flexibla produktionsresurser som ökar produktionstakten och leverera till marknaden på kortare tid med bibehållen hög kostnadseffektivitet. För att hantera en sådan utmaning måste produktionssystemens uppbyggnad skifta mot omkonfigurerbara tillverkningssystem (RMS), vilket möjliggör för produktionen att på ett snabbt och kostnadseffektivt sätt ändra sin funktion och kapacitet för att möta oförutsedda marknadsvariationer och produktförändringar. Trots de fördelar som RMS för med sig så är design och nyttjande av dessa system för med en hög effektivitetsgrad en komplex och utmanande uppgift som kräver användning av optimeringstekniker. Metoder för simuleringsbaserad optimering (SBO) har visat sig förbättra komplexa tillverkningssystem som utsätts för planerade och oplanerade händelser. Användningen av SBO-metoder för att ta itu med utmaningen rörande design och effektiv nyttjande av RMS är dock underutvecklad och där nyttjande av flermålsoptimering (MOO) är begränsad. Det har endast skett ett fåtal försök att tillämpa simulering baserad flermålsoptimering (SMO) för att hantera flera konflikterande mål. På grund av den komplexet i RMS kämpar tillverkningsorganisationer som om-famnar den här typen av system med områden som systemkonfiguration, antal resurser och uppgiftstilldelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka designen och hanteringen av RMS. Fördelarna för beslutsfattare har visat sig när SMO används mot RMS-utmaningarna. Dessa fördelar har förbättrats genom att kombinera SMO med kunskapsupptäckt och kunskapsdriven optimering (KDO). Denna kombination har bidragit till nuvarande forskningspraktiker och visat sig vara ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar. På grund av RMS inneboende komplexitet, de tillverkande organisationer som arbetar med denna typ av system möter oftast utmaningar rörande systemkonfiguration, antal resurser och uppgiftsfördelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka design och effektive nyttande av RMS system. Fördelarna med att nyttja SMO för RMS utmaning har demonstrerats för beslutsfattare. Fördelarna har en mer utvecklats genom att kombinera SMO med kunskaps extrahering och KDO. Kombinationen av dessa tekniker har bidragit till den forskning som presenteras här som visat sig vara IV ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2023. p. xv, 78
Series
Dissertation Series ; 51
National Category
Production Engineering, Human Work Science and Ergonomics Software Engineering Other Mechanical Engineering Other Engineering and Technologies not elsewhere specified Embedded Systems
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-23113 (URN)978-91-987906-5-8 (ISBN)
Public defence
2023-09-08, Insikten, Kanikegränd 3B, Skövde, 09:30 (English)
Opponent
Supervisors
Available from: 2023-08-18 Created: 2023-08-18 Last updated: 2024-03-25Bibliographically approved

Open Access in DiVA

fulltext(28194 kB)220 downloads
File information
File name FULLTEXT01.pdfFile size 28194 kBChecksum SHA-512
b30a3c16552a0f49e923e774d5cbcb97bec997025bb80a5a4ee27cbb4f903bfa0bbec783d19bd9c730ec2896a8d3d65cf1a98755bfe38c8d3d1ebe4a581ecc80
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Barrera Diaz, Carlos AlbertoNourmohammadi, AmirSmedberg, HenrikAslam, TehseenNg, Amos H. C.

Search in DiVA

By author/editor
Barrera Diaz, Carlos AlbertoNourmohammadi, AmirSmedberg, HenrikAslam, TehseenNg, Amos H. C.
By organisation
School of Engineering ScienceVirtual Engineering Research Environment
Production Engineering, Human Work Science and ErgonomicsComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 220 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 710 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf