Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt244",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1663",{id:"formSmash:j_idt1663",widgetVar:"widget_formSmash_j_idt1663",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
####

#### Authority records

Tadesse, Yohannes
#### Search in DiVA

##### By author/editor

Tadesse, Yohannes
On the subject

Algebra and LogicGeometry
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1871",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[2,1,6,3,4,2,4,3,2,7]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:10,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1737733'}],ticks:["Sep -23","Oct -23","Nov -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24","May -24","Jun -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 55 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1964",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt201",{id:"formSmash:upper:j_idt201",widgetVar:"widget_formSmash_upper_j_idt201",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt209_j_idt212",{id:"formSmash:upper:j_idt209:j_idt212",widgetVar:"widget_formSmash_upper_j_idt209_j_idt212",target:"formSmash:upper:j_idt209:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Tangential Derivations, Hilbert Series and Modules over Lie AlgebroidsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2011. , p. 66
##### Keywords [en]

Tangential Derivations, Monomials, Multiplier Ideals, Lie Algebroids, Hilbert series
##### National Category

Algebra and Logic Geometry
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:his:diva-22287ISBN: 978-91-7447-372-8 (print)OAI: oai:DiVA.org:his-22287DiVA, id: diva2:1737733
##### Public defence

2011-10-28, lecture room 14, house 5, Kräftriket, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt726",{id:"formSmash:j_idt726",widgetVar:"widget_formSmash_j_idt726",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt756",{id:"formSmash:j_idt756",widgetVar:"widget_formSmash_j_idt756",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt774",{id:"formSmash:j_idt774",widgetVar:"widget_formSmash_j_idt774",multiple:true});
##### Note

##### List of papers

Let *A/k* be a local commutative algebra over a field *k* of characteristic 0, and *T_{A/k}* be the module of *k*-linear derivations on *A*. We study, in two papers, the set of *k*-linear derivations on *A* which are tangential to an ideal *I* of *A* (preserves *I*), defining an *A*-submodule *T_{A/k}(I)* of *T_{A/k}*, which moreover is a *k*-Lie subalgebra. More generally we consider Lie algebroids *g_A* over *A* and modules over *g_A*.

**Paper I**: Using the action of an algebraic torus on a monomial ideal in a polynomial ring **A**=*k*[*x_1,..., x_n*] we:

- give a new proof of a description of the set of tangential derivations
*T_{***A***/k}(I)*along a monomial ideal*I*, first proven by Brumatti and Simis. - give a new and direct proof to the fact that the integral closure of a monomial ideal is monomial. We also prove that a derivation which is tangential to a monomial ideal will remain tangential to its integral closure.
- prove that a derivation which is tangential to a monomial ideal is also tangential to any of its associated multiplier ideals.

**Paper II**: We consider modules *M* over a Lie algebroid *g_A* which are of finite type over *A*. In particular, we study the Hilbert series of the associated graded module of such a module with respect to an ideal of definition.

Our main results are:

- Hilbert's finiteness theorem in invariant theory is shown to hold also for a noetherian graded
*g_A*-algebra*S*and a noetherian (*S, g_A*)-graded module which are semisimple over*g_A*. - We define a class of local system
*g_A*-modules and prove that the Hilbert series of such a graded module is rational. We also define an ideal of definition for a*g_A*-module*M*and prove rationality of the Hilbert series of*M*with respect to such an ideal. - We introduce the notion of toral Lie algebroids over a regular noetherian local algebra
*R*and give some properties of modules over such Lie algebroids. In particular, we compute the Hilbert series of submodules of*R*over a Lie algebroid containig a toral Lie algebroid.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: Submitted.

Available from: 2011-10-06 Created: 2023-02-17 Last updated: 2023-02-171. Hilbert series of modules over Lie algebroids$(function(){PrimeFaces.cw("OverlayPanel","overlay1737714",{id:"formSmash:j_idt894:0:j_idt908",widgetVar:"overlay1737714",target:"formSmash:j_idt894:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Derivations Preserving a Monomial Ideal$(function(){PrimeFaces.cw("OverlayPanel","overlay1737705",{id:"formSmash:j_idt894:1:j_idt908",widgetVar:"overlay1737705",target:"formSmash:j_idt894:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1893",{id:"formSmash:j_idt1893",widgetVar:"widget_formSmash_j_idt1893",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1946",{id:"formSmash:lower:j_idt1946",widgetVar:"widget_formSmash_lower_j_idt1946",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1947_j_idt1949",{id:"formSmash:lower:j_idt1947:j_idt1949",widgetVar:"widget_formSmash_lower_j_idt1947_j_idt1949",target:"formSmash:lower:j_idt1947:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});