Open this publication in new window or tab >>2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
In today’s global and aggressive market system, for manufacturing companies to remain competitive, they must manufacture high-quality products that can be produced at a low cost; they also must respond efficiently to customers’ predictable and unpredictable needs and demand variations. Increasingly shortened product lifecycles, as well as product customization degrees, lead to swift changes in the market that need to be supported by capable and flexible resources able to produce faster and deliver to the market in shorter periods while maintaining a high degree of cost-efficiency. To cope with all these challenges, the setup of production systems needs to shift toward Reconfigurable Manufacturing Systems (RMSs), making production capable of rapidly and economically changing its functionality and capacity to face uncertainties, such as unforeseen market variations and product changes. Despite the advantages of RMSs, designing and managing these systems to achieve a high-efficiency level is a complex and challenging task that requires optimization techniques. Simulation-based optimization (SBO) methods have been proven to improve complex manufacturing systems that are affected by predictable and unpredictable events. However, the use of SBO methods to tackle challenging RMS design and management processes is underdeveloped and rarely involves Multi-Objective Optimization (MOO). Only a few attempts have applied Simulation-Based Multi-Objective Optimization (SMO) to simultaneously deal with multiple conflictive objectives. Furthermore, due to the intrinsic complexity of RMSs, manufacturing organizations that embrace this type of system struggle with areas such as system configuration, number of resources, and task assignment. Therefore, this dissertation contributes to such areas by employing SMO to investigate the design and management of RMSs. The benefits for decision-makers have been demonstrated when SMO is employed toward RMS-related challenges. These benefits have been enhanced by combining SMO with knowledge discovery and Knowledge-Driven Optimization (KDO). This combination has contributed to current research practices proving to be an effective and supportive decision support tool for manufacturing organizations when dealing with RMS challenges.
Abstract [sv]
I dagens globala och högst föränderliga marknad för att vara konkurrenskraftig måste tillverkandebolag producera högkvalitativa produkter som produceras till låga kostnader och möter kunders behov samt är anpassningsbara till marknadens variationer i efterfrågan. De allt kortare produktlivscyklerna och graden av produktanpassning leder till snabba förändringar på marknaden som behöver stödjas av mer kapabla och flexibla produktionsresurser som ökar produktionstakten och leverera till marknaden på kortare tid med bibehållen hög kostnadseffektivitet. För att hantera en sådan utmaning måste produktionssystemens uppbyggnad skifta mot omkonfigurerbara tillverkningssystem (RMS), vilket möjliggör för produktionen att på ett snabbt och kostnadseffektivt sätt ändra sin funktion och kapacitet för att möta oförutsedda marknadsvariationer och produktförändringar. Trots de fördelar som RMS för med sig så är design och nyttjande av dessa system för med en hög effektivitetsgrad en komplex och utmanande uppgift som kräver användning av optimeringstekniker. Metoder för simuleringsbaserad optimering (SBO) har visat sig förbättra komplexa tillverkningssystem som utsätts för planerade och oplanerade händelser. Användningen av SBO-metoder för att ta itu med utmaningen rörande design och effektiv nyttjande av RMS är dock underutvecklad och där nyttjande av flermålsoptimering (MOO) är begränsad. Det har endast skett ett fåtal försök att tillämpa simulering baserad flermålsoptimering (SMO) för att hantera flera konflikterande mål. På grund av den komplexet i RMS kämpar tillverkningsorganisationer som om-famnar den här typen av system med områden som systemkonfiguration, antal resurser och uppgiftstilldelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka designen och hanteringen av RMS. Fördelarna för beslutsfattare har visat sig när SMO används mot RMS-utmaningarna. Dessa fördelar har förbättrats genom att kombinera SMO med kunskapsupptäckt och kunskapsdriven optimering (KDO). Denna kombination har bidragit till nuvarande forskningspraktiker och visat sig vara ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar. På grund av RMS inneboende komplexitet, de tillverkande organisationer som arbetar med denna typ av system möter oftast utmaningar rörande systemkonfiguration, antal resurser och uppgiftsfördelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka design och effektive nyttande av RMS system. Fördelarna med att nyttja SMO för RMS utmaning har demonstrerats för beslutsfattare. Fördelarna har en mer utvecklats genom att kombinera SMO med kunskaps extrahering och KDO. Kombinationen av dessa tekniker har bidragit till den forskning som presenteras här som visat sig vara IV ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar.
Place, publisher, year, edition, pages
Skövde: University of Skövde, 2023. p. xv, 78
Series
Dissertation Series ; 51
National Category
Production Engineering, Human Work Science and Ergonomics Software Engineering Other Mechanical Engineering Other Engineering and Technologies not elsewhere specified Embedded Systems
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-23113 (URN)978-91-987906-5-8 (ISBN)
Public defence
2023-09-08, Insikten, Kanikegränd 3B, Skövde, 09:30 (English)
Opponent
Supervisors
2023-08-182023-08-182024-03-25Bibliographically approved