The compensation of large in-plane motions in digital speckle-pattern interferometry (DSPI) with the use of digital speckle photography (DSP) is demonstrated. Ordinary recordings of DSPI are recombined and analyzed with DSP. The DSP result is used to compensate for the bulk speckle motion prior to calculation of the phase map. This results in a high fringe contrast even for deformations of several speckle diameters. In addition, for the case of an in-plane deformation, it is shown that the absolute phase change in each pixel may be unwrapped by use of the DSP result as an initial guess. The principles of this method and experiments showing the in-plane rotation of a plate and the encounter of two rounded plates are presented.