Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulation of hip joint location for occupant packaging design
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (User Centred Product Design)ORCID iD: 0000-0003-0746-9816
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (User Centred Product Design)ORCID iD: 0000-0002-0125-0832
University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment. University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Interaction Lab)ORCID iD: 0000-0003-2254-1396
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (User Centred Product Design)ORCID iD: 0000-0003-4596-3815
2022 (English)In: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA, University of Iowa Press, 2022, Vol. 7, p. 1-12, article id 34Conference paper, Published paper (Refereed)
Abstract [en]

DHM tools have been widely used to analyze and improve vehicle occupant packaging and interior design in the automotive industry. However, these tools still present some limitations for this application. Accurately characterizing seated posture is crucial for ergonomic and safety evaluations. Current human posture and motion predictions in DHM tools are not accurate enough for the precise nature of vehicle interior design, typically requiring manual adjustments from DHM users to get more accurate driving and passenger simulations. Manual adjustment processes can be time-consuming, tedious, and subjective, easily causing non-repeatable simulation results. These limitations create the need to validate the simulation results with real-world studies, which increases the cost and time in the vehicle development process. Working with multiple Swedish automotive companies, we have begun to identify and specify the limitations of DHM tools relating to driver and passenger posture predictions given predefined vehicle geometry points/coordinates and specific human body parts relationships. Two general issues frame the core limitations. First, human kinematic models used in DHM tools are based on biomechanics models that do not provide definitions of these models in relation to vehicle geometries. Second, vehicle designers follow standards and regulations to obtain key human reference points in seated occupant locations. However, these reference points can fail to capture the range of human variability. This paper describes the relationship between a seated reference point and a biomechanical hip joint for driving simulations. The lack of standardized connection between occupant packaging guidelines and the biomechanical knowledge of humans creates a limitation for ergonomics designers and DHM users. We assess previous studies addressing hip joint estimation from different fields to establish the key aspects that might affect the relationship between standard vehicle geometry points and the hip joint. Then we suggest a procedure for standardizing points in human models within DHM tools. A better understanding of this problem may contribute to achieving closer to reality driving posture simulations and facilitating communication of ergonomics requirements to the design team within the product development process.

Place, publisher, year, edition, pages
University of Iowa Press, 2022. Vol. 7, p. 1-12, article id 34
Keywords [en]
hip joint, H-point, seated reference point, simulation, digital human modelling
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Interaction Lab (ILAB)
Identifiers
URN: urn:nbn:se:his:diva-21831DOI: 10.17077/dhm.31742ISBN: 978-0-9840378-4-1 (print)OAI: oai:DiVA.org:his-21831DiVA, id: diva2:1697453
Conference
7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022.
Note

Copyright © 2022 the author(s) 

Available from: 2022-09-20 Created: 2022-09-20 Last updated: 2022-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textProceedings

Authority records

Perez Luque, EstelaBrolin, ErikLamb, MauriceHögberg, Dan

Search in DiVA

By author/editor
Perez Luque, EstelaBrolin, ErikLamb, MauriceHögberg, Dan
By organisation
School of Engineering ScienceVirtual Engineering Research EnvironmentSchool of InformaticsInformatics Research Environment
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 209 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf