Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimizing Reconfigurable Manufacturing Systems for Fluctuating Production Volumes: A Simulation-Based Multi-Objective Approach
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Produktion och automatiseringsteknik (PAT), Production and automation engineering)ORCID iD: 0000-0003-3541-9330
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Produktion och automatiseringsteknik (PAT), Production and automation engineering)ORCID iD: 0000-0002-0880-2572
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Division of Industrial Engineering and Management, Department of Civil and Industrial Engineering, Uppsala University, Sweden. (Produktion och automatiseringsteknik (PAT), Production and automation engineering)ORCID iD: 0000-0003-0111-1776
2021 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 9, p. 144195-144210Article in journal (Refereed) Published
Abstract [en]

In today’s global and volatile market, manufacturing enterprises are subjected to intense global competition, increasingly shortened product lifecycles and increased product customization and tailoring while being pressured to maintain a high degree of cost-efficiency. As a consequence, production organizations are required to introduce more new product models and variants into existing production setups, leading to more frequent ramp-up and ramp-down scenarios when transitioning from an outgoing product to a new one. In order to cope with such as challenge, the setup of the production systems needs to shift towards reconfigurable manufacturing systems (RMS), making production capable of changing its function and capacity according to the product and customer demand. Consequently, this study presents a simulation-based multi-objective optimization approach for system re-configuration of multi-part flow lines subjected to scalable capacities, which addresses the assignment of the tasks to workstations and buffer allocation for simultaneously maximizing throughput and minimizing total buffer capacity to cope with fluctuating production volumes. To this extent, the results from the study demonstrate the benefits that decision-makers could gain, particularly when they face trade-off decisions inherent in today’s manufacturing industry by adopting a Simulation-Based Multi-Objective Optimization (SMO) approach.

Place, publisher, year, edition, pages
IEEE, 2021. Vol. 9, p. 144195-144210
Keywords [en]
Multi-objective optimization, reconfigurable manufacturing systems, simulation-based optimization, genetic algorithm
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Production and Automation Engineering; VF-KDO
Identifiers
URN: urn:nbn:se:his:diva-20674DOI: 10.1109/ACCESS.2021.3122239ISI: 000712563100001Scopus ID: 2-s2.0-85118540679OAI: oai:DiVA.org:his-20674DiVA, id: diva2:1606924
Projects
VF-KDO
Funder
Knowledge Foundation
Note

CC BY 4.0

This work was partially supported by the Knowledge Foundation (KKS), Sweden, through the funding of the research profile VirtualFactories with Knowledge-Driven Optimization (VF-KDO) (2018-2026). 

Available from: 2021-10-29 Created: 2021-10-29 Last updated: 2023-08-18Bibliographically approved
In thesis
1. Simulation-based multi-objective optimization for reconfigurable manufacturing systems: Reconfigurability, manufacturing, simulation, optimization, rms, multi-objective, knowledge discovery
Open this publication in new window or tab >>Simulation-based multi-objective optimization for reconfigurable manufacturing systems: Reconfigurability, manufacturing, simulation, optimization, rms, multi-objective, knowledge discovery
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In today’s global and aggressive market system, for manufacturing companies to remain competitive, they must manufacture high-quality products that can be produced at a low cost; they also must respond efficiently to customers’ predictable and unpredictable needs and demand variations. Increasingly shortened product lifecycles, as well as product customization degrees, lead to swift changes in the market that need to be supported by capable and flexible resources able to produce faster and deliver to the market in shorter periods while maintaining a high degree of cost-efficiency. To cope with all these challenges, the setup of production systems needs to shift toward Reconfigurable Manufacturing Systems (RMSs), making production capable of rapidly and economically changing its functionality and capacity to face uncertainties, such as unforeseen market variations and product changes. Despite the advantages of RMSs, designing and managing these systems to achieve a high-efficiency level is a complex and challenging task that requires optimization techniques. Simulation-based optimization (SBO) methods have been proven to improve complex manufacturing systems that are affected by predictable and unpredictable events. However, the use of SBO methods to tackle challenging RMS design and management processes is underdeveloped and rarely involves Multi-Objective Optimization (MOO). Only a few attempts have applied Simulation-Based Multi-Objective Optimization (SMO) to simultaneously deal with multiple conflictive objectives. Furthermore, due to the intrinsic complexity of RMSs, manufacturing organizations that embrace this type of system struggle with areas such as system configuration, number of resources, and task assignment. Therefore, this dissertation contributes to such areas by employing SMO to investigate the design and management of RMSs. The benefits for decision-makers have been demonstrated when SMO is employed toward RMS-related challenges. These benefits have been enhanced by combining SMO with knowledge discovery and Knowledge-Driven Optimization (KDO). This combination has contributed to current research practices proving to be an effective and supportive decision support tool for manufacturing organizations when dealing with RMS challenges.

Abstract [sv]

I dagens globala och högst föränderliga marknad för att vara konkurrenskraftig måste tillverkandebolag producera högkvalitativa produkter som produceras till låga kostnader och möter kunders behov samt är anpassningsbara till marknadens variationer i efterfrågan. De allt kortare produktlivscyklerna och graden av produktanpassning leder till snabba förändringar på marknaden som behöver stödjas av mer kapabla och flexibla produktionsresurser som ökar produktionstakten och leverera till marknaden på kortare tid med bibehållen hög kostnadseffektivitet. För att hantera en sådan utmaning måste produktionssystemens uppbyggnad skifta mot omkonfigurerbara tillverkningssystem (RMS), vilket möjliggör för produktionen att på ett snabbt och kostnadseffektivt sätt ändra sin funktion och kapacitet för att möta oförutsedda marknadsvariationer och produktförändringar. Trots de fördelar som RMS för med sig så är design och nyttjande av dessa system för med en hög effektivitetsgrad en komplex och utmanande uppgift som kräver användning av optimeringstekniker. Metoder för simuleringsbaserad optimering (SBO) har visat sig förbättra komplexa tillverkningssystem som utsätts för planerade och oplanerade händelser. Användningen av SBO-metoder för att ta itu med utmaningen rörande design och effektiv nyttjande av RMS är dock underutvecklad och där nyttjande av flermålsoptimering (MOO) är begränsad. Det har endast skett ett fåtal försök att tillämpa simulering baserad flermålsoptimering (SMO) för att hantera flera konflikterande mål. På grund av den komplexet i RMS kämpar tillverkningsorganisationer som om-famnar den här typen av system med områden som systemkonfiguration, antal resurser och uppgiftstilldelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka designen och hanteringen av RMS. Fördelarna för beslutsfattare har visat sig när SMO används mot RMS-utmaningarna. Dessa fördelar har förbättrats genom att kombinera SMO med kunskapsupptäckt och kunskapsdriven optimering (KDO). Denna kombination har bidragit till nuvarande forskningspraktiker och visat sig vara ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar. På grund av RMS inneboende komplexitet, de tillverkande organisationer som arbetar med denna typ av system möter oftast utmaningar rörande systemkonfiguration, antal resurser och uppgiftsfördelning. Följaktligen bidrar denna avhandling till de nämnda områdena genom att använda SMO för att undersöka design och effektive nyttande av RMS system. Fördelarna med att nyttja SMO för RMS utmaning har demonstrerats för beslutsfattare. Fördelarna har en mer utvecklats genom att kombinera SMO med kunskaps extrahering och KDO. Kombinationen av dessa tekniker har bidragit till den forskning som presenteras här som visat sig vara IV ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de hanterar RMS-utmaningar.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2023. p. xv, 78
Series
Dissertation Series ; 51
National Category
Production Engineering, Human Work Science and Ergonomics Software Engineering Other Mechanical Engineering Other Engineering and Technologies not elsewhere specified Embedded Systems
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-23113 (URN)978-91-987906-5-8 (ISBN)
Public defence
2023-09-08, Insikten, Kanikegränd 3B, Skövde, 09:30 (English)
Opponent
Supervisors
Available from: 2023-08-18 Created: 2023-08-18 Last updated: 2023-08-18Bibliographically approved

Open Access in DiVA

fulltext(1767 kB)160 downloads
File information
File name FULLTEXT01.pdfFile size 1767 kBChecksum SHA-512
e5661405d497001d4407f1d7474402a240a25a4c0430d1adbcbc6215b5e8f2fb3e4b7f70efe07a70633dd8af24ba2b2d070933bac53a94061f9993ae0d926537
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Barrera Diaz, Carlos AlbertoAslam, TehseenNg, Amos H. C.

Search in DiVA

By author/editor
Barrera Diaz, Carlos AlbertoAslam, TehseenNg, Amos H. C.
By organisation
School of Engineering ScienceVirtual Engineering Research Environment
In the same journal
IEEE Access
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar
Total: 160 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 255 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf