Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Isoform 2 of DLG2 gene as a possible candidate tumour suppressor of neuroblastoma
University of Skövde, School of Bioscience.
2021 (English)Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Neuroblastoma (NB) is the most frequent extracranial solid tumour in childhood. The clinical diagnosis of NB is difficult due to the age of the patient and the vague appearance of the symptoms. Moreover, there are two groups of aggressive NBs, one with MYCN amplification and the other with an 11q deletion. Some genes could be a candidate suppressor for NB, e.g., the DLG2 gene that resides within the 11q-deleted region. The DLG2 gene has a large number of exons and multiple isoforms depending on the alternative splicing process. Moreover, these isoforms can include the L27 domain or not. This study aimed to analyse, by applying bioinformatic tools, if isoform 2, which does not have L27 domain, could be a candidate suppressor for this disease. RNA-seq samples from different human cell lines were collected from NCBI and a quality analysis was performed. The filtered samples were run in R and Python programs to do a visualization of the exon expression level and the prediction of Rsubread for exon-exon junctions. The results showed that isoform 2 of DLG2 gene was not expressed in the samples of NB, which is a promising result for being a candidate suppressor of NB. Furthermore, the prediction of exon-exon junctions by Rsubread was confirmed to be very accurate. In conclusion, this study shows that isoform 2 of DLG2 gene could be a candidate tumour suppressor in NB that could, in the future, be used as a target to help to detect earlier the presence of NB and increase the life expectancy of children who suffer from this disease.

Place, publisher, year, edition, pages
2021. , p. 32
National Category
Medical Bioscience
Identifiers
URN: urn:nbn:se:his:diva-20234OAI: oai:DiVA.org:his-20234DiVA, id: diva2:1579625
Subject / course
Bioscience
Supervisors
Examiners
Note

There are other digital material (eg film, image or audio files) or models/artifacts that belongs to the thesis and need to be archived.

Available from: 2021-07-09 Created: 2021-07-09 Last updated: 2021-07-09Bibliographically approved

Open Access in DiVA

fulltext(643 kB)199 downloads
File information
File name FULLTEXT01.pdfFile size 643 kBChecksum SHA-512
79867878f6816f2064c8973136fe1a084721aca2e6492163ac593cb503d34096e978b30e2413ca02add02d36e985859092a57b6f34520b1c65cf0bcec81a0350
Type fulltextMimetype application/pdf

By organisation
School of Bioscience
Medical Bioscience

Search outside of DiVA

GoogleGoogle Scholar
Total: 199 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 371 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf