Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-Level Optimization with Aggregated Discrete-Event Models
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Volvo Car Corporation. (Produktion och automatiseringsteknik (PAT), Production and automation engineering)ORCID iD: 0000-0003-1215-152x
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Produktion och automatiseringsteknik (PAT), Production and automation engineering)ORCID iD: 0000-0002-0880-2572
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Produktion och automatiseringsteknik (PAT), Production and automation engineering)ORCID iD: 0000-0003-0111-1776
2020 (English)In: Proceedings of the 2020 Winter Simulation Conference / [ed] K.-H. Bae; B. Feng; S. Kim; S. Lazarova-Molnar; Z. Zheng; T. Roeder; R. Thiesing, IEEE, 2020, p. 1515-1526Conference paper, Published paper (Refereed)
Abstract [en]

Removing bottlenecks that restrain the overall performance of a factory can give companies a competitive edge. Although in principle, it is possible to connect multiple detailed discrete-event simulation models to form a complete factory model, it could be too computationally expensive, especially if the connected models are used for simulation-based optimizations. Observing that computational speed of running a simulation model can be significantly reduced by aggregating multiple line-level models into an aggregated factory level, this paper investigates, with some loss of detail, if the identified bottleneck information from an aggregated factory model, in terms of which parameters to improve, would be useful and accurate enough when compared to the bottleneck information obtained with some detailed connected line-level models. The results from a real-world, multi-level industrial application study have demonstrated the feasibility of this approach, showing that the aggregation method can represent the underlying detailed line-level model for bottleneck analysis.

Place, publisher, year, edition, pages
IEEE, 2020. p. 1515-1526
Series
Proceedings of the Winter Simulation Conference, ISSN 0891-7736, E-ISSN 1558-4305
Keywords [en]
Aggregation, Data mining, Decision support, Discrete event simulation, Industrial case study, Multi-objective optimization, Agglomeration, Decision making, Decision support systems, Decision trees, Digital storage, Multiobjective optimization, Trees (mathematics), Decision supports, Decision-tree algorithm, Industrial problem, Industrial systems, Knowledge extraction, Real-world optimization, Simulation-based optimizations
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
VF-KDO; Production and Automation Engineering
Identifiers
URN: urn:nbn:se:his:diva-19643DOI: 10.1109/WSC48552.2020.9383990ISI: 000679196301044Scopus ID: 2-s2.0-85103904651ISBN: 978-1-7281-9499-8 (electronic)ISBN: 978-1-7281-9500-1 (print)OAI: oai:DiVA.org:his-19643DiVA, id: diva2:1545733
Conference
Winter Simulation Conference, December 14-18, 2020, Virtual Conference
Part of project
Virtual factories with knowledge-driven optimization (VF-KDO), Knowledge Foundation
Funder
Knowledge Foundation
Note

Copyright © 2020, IEEE

Available from: 2021-04-20 Created: 2021-04-20 Last updated: 2024-09-17Bibliographically approved
In thesis
1. Evaluating Fast and Efficient Modeling Methods for Simulation-Based Optimization
Open this publication in new window or tab >>Evaluating Fast and Efficient Modeling Methods for Simulation-Based Optimization
2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

As the industry in general, and the automotive industry in particular, is transforming -- due to new technologies and changes in market demands through electrification, digitalization, and globalization -- maintaining a competitive edge will require better predictions. Better predictions of production performance allows companies to capitalize on opportunities, avoid costly mistakes, and be proactive about change.

A commonly used tool in manufacturing for the prediction of production performance is discrete-event simulation. In combination with artificial intelligence methods such as multi-objective optimization, in literature often referred to as simulation-based optimization, and knowledge extraction, bottlenecks in the production process can be identified and recipes for optimal improvement order can be obtained. These recipes support the decision-maker in both understanding the production system and improving it optimally in terms of resource efficiency and investment cost. Even though the use of simulation-based optimization is widespread on the production line level, use on the factory level is more scarce. Improvements on the production line level, without a holistic view of factory performance, can be suboptimal and may only lead to increased storage levels instead of increased output to the customer.

The main obstacle for applying simulation-based optimization to the factory level is the complexity of its constituent parts, i.e., detailed production line models. Connecting several detailed production line models to create a factory model results in an overly complicated, albeit, accurate model. A single factory model running for one minute would equate to almost 140 days required for an optimization project, too long to provide decision-support relevant to manufacturing decision-making. This can be mitigated by parallel computing, but a more effective approach is to simplify the production line models to decrease the runtime while trying to maintain accuracy. Model simplification methods are approaches to reduce model complexity in new and existing simulation models. Previous research has provided an accurate and runtime efficient simplification method by use of a generic model structure built by common modeling components. Although the method seems promising in a few publications, it was lacking external and internal validity.

This project presents simulation-based optimization on the factory level enabled by a model simplification method. By following the design science research methodology, several case-studies mainly in the automotive industry identify issues with the current implementation, propose additions to the method, and validates them.

Abstract [sv]

Industrin i allmänhet, och fordonsindustrin i synnerhet, är under transformation -- som reaktion på nya tekniker och marknadsförändringar orsakade av elektrifiering, digitalisering och globalisering -- och för att upprätthålla konkurrenskraft krävs bättre prediktering av nuvarande och framtida produktionsprestanda. Bättre prediktering ger företag möjlighet att gå från att vara reaktiva till att vara proaktiva och undvika kostsamma misstag.       

Ett vanligt verktyg i tillverkande industri för att förutspå produktionsprestanda är diskret händelsestyrd simulering. Kombinerat med artificiell intelligens -- genom flermålsoptimering, även kallat simuleringsbaserad optimering, och kunskapsextrahering -- kan flaskhalsar identifieras och ge recept för en optimal förbättringsordning. Dessa recept stödjer beslutsfattaren genom både förståelse för sitt eget produktionssystem och hur det kan förbättras optimalt med avseende på resurseffektivitet och investeringskostnad. Även om simuleringsbaserad optimering är vanligt förekommande för produktionslinjer är det desto mer sällsynt på fabriksnivån. Förbättringar på produktionslinjenivå, utan hänsyn till den övergripande fabriksnivån, kan vara suboptimala och endast leda till ökade lagernivåer istället för leverans till slutkund.       

Det största hindret för att applicera simuleringsbaserad optimering på fabriksnivån är komplexiteten av dess ingående delar, det vill säga de detaljerade modellerna på produktionslinjenivå. Att ansluta flera detaljerade produktionslinjemodeller för att skapa en fabriksmodell resulterar i en överkomplicerad men exakt modell. En fabriksmodell som kräver en minut simuleringstid betyder nästan 140 dagars simuleringstid för en optimeringsstudie. Tiden kan minskas genom parallella processer men ett mer lämpligt angreppssätt är att minska komplexiteten för produktionslinjemodellerna, och därmed körtiden, och samtidigt bibehålla noggrannheten i resultaten. Metoder för modellförenkling är angreppssätt för att reducera modellkomplexitet i nya och existerande modeller. En existerande metod ger noggranna och snabba modeller genom en generisk modellstruktur byggd på vanligt förekommande modellkomponenter. Metoden har visats fungera i ett antal publikationer men experiment för att säkerställa validitet och generaliserbarhet saknas.       

Detta projekt presenterar simuleringsbaserad optimering på fabriker vilket möjliggörs genom en validerad modellförenklingsmetod. Genom att följa forskningsmetoden design science har flera fallstudier planerats och genomförts för att identifiera brister i nuvarande implementation, genomföra förbättringar och validera dessa.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2021. p. 140
Series
Dissertation Series ; 40
National Category
Computer Sciences
Research subject
Production and Automation Engineering
Identifiers
urn:nbn:se:his:diva-20624 (URN)978-91-984919-4-4 (ISBN)
Presentation
2021-10-26, Portalen, Insikten, Kanikegränd 3, Skövde, 10:00 (English)
Opponent
Supervisors
Projects
Smart Industry Research School
Funder
Knowledge Foundation
Note

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of University of Skövde's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

Available from: 2021-10-12 Created: 2021-10-06 Last updated: 2021-11-01Bibliographically approved
2. Decision Support Architecture: Improvement Management of Manufacturing Sites Through Multi-Level Simulation-Based Optimization
Open this publication in new window or tab >>Decision Support Architecture: Improvement Management of Manufacturing Sites Through Multi-Level Simulation-Based Optimization
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Manufacturing companies face a complex world with ever-changing demands, globalization, sustainability concerns, and economic challenges. Accurate improvement management and predicting future performance are crucial for staying competitive. Discrete-Event Simulation (DES) helps capture the dynamics of complex production systems, and Simulation-Based Optimization (SBO) can identify improvements with these models. However, past optimization approaches focused on individual production lines, which could lead to sub-optimizations when considering the performance of the manufacturing site. This research proposes a multi-level optimization approach for improvement management focusing on the performance of the manufacturing site.

High computational complexity resulting from combining several detailed models to create the site-level model is an obstacle to presenting decision support in a timeframe suitable for industrial decision-making. The research addresses this by validating a simplification method for DES models which replaces detailed models with simpler ones, sacrificing some detail and accuracy for faster runtime performance, enabling SBO for the site and supply chain level. %This is the first major contribution of this dissertation. 

The second part presents a Decision Support Architecture (DSA) using SBO to optimize site performance. The process starts by identifying the most critical bottleneck line on the entire site, including the specific parameter causing the issue, e.g., processing time or downtime. This approach prioritizes improvements with the highest impact for the least resource expenditure. Following this analysis, individual production lines are further optimized to identify specific equipment and parameters for improvement. Knowledge extraction algorithms then prioritize these improvements, guiding efforts and ensuring they benefit the entire site. Allowing for more efficient resource management, confidence that the proposed improvements are beneficial for the site, and improved decision-making at the site level.

The main novel research outcome of this dissertation lies in the multi-level optimization approach, combined with knowledge extraction and SBO enabled by simplified simulation models. This framework provides valuable insights for optimizing manufacturing sites in a complex and dynamic environment.

Abstract [sv]

Dagens tillverkningsindustrier behöver konkurrera i en omvärld som präglas av föränderliga krav, globalisering, krav på hållbarhet, och ekonomiska utmaningar. Noggrann förbättringshantering och möjligheten att kunna uppskatta framtida prestanda i produktionssystemen är avgörande för att förbli konkurrenskraftiga. Discrete-Event Simulation (DES) och Simulation-Based Optimization (SBO) är kraftfulla verktyg för att modellera och optimera komplexa produktionssystem. SBO har tidigare använts främst för enskilda produktionslinjer, vilket kan leda till suboptimeringar om hänsyn tas till hela systemets prestanda. Detta vetenskapliga bidrag föreslår ett angreppsätt där flernivå-optimering nyttjas för att fokusera på resultatet för hela systemet.

För att övervinna utmaningen med långa beräkningstider för komplexa modeller, utvärderar denna forskning en metod för att förenkla DES-modeller. Genom att minska detaljnoggrannheten kan beräkningstiden reduceras, vilket möjliggör snabbare SBO-analys av hela fabriker och värdeflöden. Denna förenklingsmetod är avgörande för att kunna erbjuda beslutsstöd inom en rimlig tid för industriellt beslutsfattande. Detta bidrag utgör avhandlingens första del.

Avhandlingens andra del presenterar en beslutstödsarkitektur, kallad Decision Support Architecture (DSA), som nyttjar SBO för att optimera fabriksprestanda. Processen inleds med att identifiera den mest kritiska flaskhalsen i produktionssystemet och den specifika parametern som behöver förbättras. Den här metoden prioriterar förbättringar med störst effekt för minsta resursförbrukning. Efter denna analys optimeras varje enskild produktionslinje med detaljerade modeller för att identifiera vilken utrustning och parameter som ger störst effekt på förbättringen. Algoritmer för kunskapsutvinning används sedan för att prioritera dessa förbättringar baserat på deras effekt på hela fabrikens prestanda, vilket leder till effektivare resurshantering och förbättrat beslutsfattande på fabriksnivå.

Det största vetenskapliga bidraget från denna avhandling utgörs av den utvecklade metoden för optimering på flera nivåer i kombination med kunskapsutvinning och SBO som möjliggörs av förenklade simuleringsmodeller. Detta ramverk ger värdefulla insikter för att optimera hela tillverkningssystem i en komplex och dynamisk miljö.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2024. p. 275
Series
Dissertation Series ; 61
National Category
Computer Systems Production Engineering, Human Work Science and Ergonomics
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-24455 (URN)978-91-987907-5-7 (ISBN)978-91-987907-6-4 (ISBN)
Public defence
2024-10-18, ASSAR, Kavelbrovägen 2B, 541 36, Skövde, 10:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Note

Smart Industry Sweden research school

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of University of Skövde's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

Två av fyra delarbeten (övriga se rubriken Delarbeten/List of papers):

3. Lidberg, Simon, Frantzén, Marcus, Aslam, Tehseen, and Ng, Amos H. C. (2024). “Model Simplification for Optimized Manufacturing Site Improvement Management”. Manuscript submitted to an international journal.

6. Lidberg, Simon (2024). “Multi-level simulation-based optimization in the cloud for continuous industrial decision support”. In: Ng, Amos H.C. and Bandaru, Sunith. Virtual Factories and Knowledge-Driven Optimization. Under review, pp. 1–20.

Available from: 2024-09-18 Created: 2024-09-17 Last updated: 2024-11-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusFull-text

Authority records

Lidberg, SimonAslam, TehseenNg, Amos H. C.

Search in DiVA

By author/editor
Lidberg, SimonAslam, TehseenNg, Amos H. C.
By organisation
School of Engineering ScienceVirtual Engineering Research Environment
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 208 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf