Maternal adiponectin prevents visceral adiposity and adipocyte hypertrophy in prenatal androgenized female miceShow others and affiliations
2021 (English)In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 35, no 4, article id e21299Article in journal (Refereed) Published
Abstract [en]
Hyperandrogenism is the main characteristic of polycystic ovary syndrome, which affects placental function and fetal growth, and leads to reproductive and metabolic dysfunction in female offspring. Adiponectin acts on the placenta and may exert endocrine effects on the developing fetus. This study aims to investigate if maternal and/or fetal adiponectin can prevent metabolic and reproductive dysfunction in prenatal androgenized (PNA) female offspring. Adiponectin transgenic (APNtg) and wild-type dams received dihydrotestosterone/vehicle injections between gestational days 16.5-18.5 to induce PNA offspring, which were followed for 4 months. Offspring from APNtg dams were smaller than offspring from wild-type dams, independent of genotype. Insulin sensitivity was higher in wild-type mice from APNtg dams compared to wild-types from wild-type dams, and insulin sensitivity correlated with fat mass and adipocyte size. PNA increased visceral fat% and adipocyte size in wild-type offspring from wild-type dams, while wild-type and APNtg offspring from APNtg dams were protected against this effect. APNtg mice had smaller adipocytes than wild-types and this morphology was associated with an increased expression of genes regulating adipogenesis (Ppard, Pparg, Cebpa, and Cebpb) and metabolism (Chrebp and Lpl). Anogenital distance was increased in all PNA-exposed wild-type offspring, but there was no increase in PNA APNtg offspring, suggesting that adiponectin overexpression protects against this effect. In conclusion, elevated adiponectin levels in utero improve insulin sensitivity, reduce body weight and fat mass gain in the adult offspring and protect against PNA-induced visceral adiposity. In conclusion, these data suggest that PNA offspring benefit from prenatal adiponectin supplementation.
Place, publisher, year, edition, pages
John Wiley & Sons, 2021. Vol. 35, no 4, article id e21299
Keywords [en]
adiponectin, adiposity, imprinting, PCOS, PNA
National Category
Endocrinology and Diabetes
Research subject
Translational Medicine TRIM
Identifiers
URN: urn:nbn:se:his:diva-19580DOI: 10.1096/fj.202002212RISI: 000635216100077PubMedID: 33715227Scopus ID: 2-s2.0-85102916113OAI: oai:DiVA.org:his-19580DiVA, id: diva2:1541589
Funder
Swedish Research Council, 2017-00792, 2018-02435, 2013-7107 and 2020-02435Diabetesfonden, DIA2019-419Magnus Bergvall Foundation, 2017-02069
Note
CC BY-NC-ND 4.0
© 2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.
2021-04-012021-04-012021-08-16Bibliographically approved