This study focuses on abrasion resistance of Lamellar Graphite Iron (LGI) using microscratch test under constant and progressive load conditions. The interactions between a semi-spherical abrasive particle, cast iron matrix and graphite lamellas were physically simulated using a sphero-conical indenter. The produced scratches were analysed using LOM and SEM to scrutinise the effect of normal load on resulting scratch depth, width, frictional force, friction coefficient and deformation mechanism of matrix during scratching. Results showed a significant matrix deformation, and change both in frictional force and friction coefficient by increase of scratch load. Furthermore, it was shown how abrasive particles might produce deep scratches with severe matrix deformation which could result in graphite lamella's coverage and thereby deteriorate LGI's abrasion resistance.
©2018 Elsevier Ltd. All rights reserved. The RightsLink Digital Licensing and Rights Management Service (including RightsLink for Open Access) is available (A) to users of copyrighted works found at the websites of participating publishers who are seeking permissions or licenses to use those works, and (B) to authors of articles and other manuscripts who are seeking to pay author publication charges in connection with the submission of their works to publishers