Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nox2/4 inhibition in NB69 during ischemia/reperfusion: Inhibition of ROS-production using M4, M107, and M114
University of Skövde, School of Health and Education.
2017 (English)Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Cerebral stroke has become one of the leading causes of death and disability worldwide. During an ischemic stroke, oxygen and nutrient deprivation occurs, which combined lead to cell starvation, anoxia, and eventually cell death. However, when blood flow is restored, reperfusion damage occurs resulting in increased cell death through several mechanisms. One of the main reasons behind ischemia/reperfusion damage is oxidative stress due to elevated production of reactive oxygen species (ROS) during reperfusion. There are several proteins and processes that are thought to be involved in elevated oxidative stress and the formation of ROS during reperfusion, among which the NADPH oxidase (Nox) family is suggested to be the main contributor of ROS.To examine this hypothesis, in the present work, we inhibited activity of the Nox2 and Nox4 enzymes during ischemia/reperfusion with the Glucox Biotech AB (Sweden) inhibitors M4, M107, and M114 to evaluate whether reducing Nox activity could reduce the ischemia/reperfusion-induced cell death, hence be used as a potential stroke treatment, the cell viability was measured with MTS after ischemia/reperfusion induction and treatment with the Nox substances. We also examined the gene expression levels of the Nox enzymes Nox2 and Nox4 with qPCR after induced ischemia/reperfusion in the neuroblastoma cell line NB69.Our results showed a decrease in Nox4 gene expression after 1h ischemia/8h reperfusion and an increased expression after 1h ischemia/24h reperfusion in NB69 cells. Treatment with M114 resulted in increased cell viability after 2h ischemia/72h reperfusion. However, the toxic effect of ischemia/reperfusion-induced response was found to be inadequate, as indicated by extensive proliferation and lack of cell death. This unfavorable outcome is suggested to be excess of oxygen in medium, metabolization of L-glutamine, and effects of growth factors in the serum used in cell culture medium during the ischemic phase. Therefore, the cell culture protocol was modified to the use of PBS instead of glucose-free medium under serum-free condition during the ischemia. The altered ischemic conditions resulted in continuous reduction in cell viability at increasing ischemic time points with total cell death at 2h ischemia, suggesting applicable conditions for ischemia/reperfusion studies. Even though a conclusion could not be made about the inhibitors M4, M107, and M114 as the cell viability assay was performed under insufficient conditions; the Nox inhibitors shows high potential as future ischemic stroke treatments, which may help save lives and improve life quality for affected patients.

Place, publisher, year, edition, pages
2017. , p. 37
National Category
Medical Biotechnology
Identifiers
URN: urn:nbn:se:his:diva-17941OAI: oai:DiVA.org:his-17941DiVA, id: diva2:1373821
Subject / course
Biomedicine/Medical Science
Educational program
Biomedicine - Study Programme
Supervisors
Examiners
Available from: 2019-12-18 Created: 2019-11-28 Last updated: 2019-12-18Bibliographically approved

Open Access in DiVA

fulltext(1527 kB)162 downloads
File information
File name FULLTEXT01.pdfFile size 1527 kBChecksum SHA-512
afe3b85b6058286996abc01a4c5058bab38ee2b1cb3055681b6e8be1e492fec1aea15ed4772ee120313a8351a16ff22f8ac71c2af6665c1e51b23090b7a8433c
Type fulltextMimetype application/pdf

By organisation
School of Health and Education
Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 162 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 172 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf