Social choice provides methods for collective decisions. They include methods for voting and for aggregating rankings. These methods are used in multiagent systems for similar purposes when decisions are to be made by agents. Votes and rankings are sensitive information. Because of that, privacy mechanisms are needed to avoid the disclosure of sensitive information. Cryptographic techniques can be applied in centralized environments to avoid the disclosure of sensitive information. A trusted third party can then compute the outcome. In distributed environments, we can use a secure multiparty computation approach for implementing a collective decision method. Other privacy models exist. Differential privacy and k-anonymity are two of them. They provide privacy guarantees that are complementary to multiparty computation approaches, and solutions that can be combined with the cryptographic ones, thus providing additional privacy guarantees, e.g., a differentially private multiparty computation model. In this paper, we propose the use of probabilistic social choice methods to achieve differential privacy. We use the method called random dictatorship and prove that under some circumstances differential privacy is satisfied and propose a variation that is always compliant with this privacy model. Our approach can be implemented using a centralized approach and also a decentralized approach. We briefly discuss these implementations.
CC BY 4.0