Assembly line designs in manufacturing commonly face the key problem of dividing the assembly tasks among the working stations so that the efficiency of the line is optimized. This problem is known as the assembly line balancing problem which is known to be NP-hard. This study, proposes a bi-objective genetic algorithm to cope with the assembly line balancing problem where the considered objectives are the utilization of the assembly line and the workload smoothness measured as the line efficiency and the variation of workload, respectively. The performance of the proposed genetic algorithm is tested through solving a set of standard problems existing in the literature. The computational results show that the genetic algorithm is promising in providing good solutions to the assembly line balancing problem.