Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probabilistic Metric Spaces for Privacy by Design Machine Learning Algorithms: Modeling Database Changes
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0002-0368-8037
Department of Information and Communications Engineering, CYBERCAT-Center for Cybersecurity Research of Catalonia, Universitat Autònoma de Barcelona, Spain.
2018 (English)In: Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS 2018 International Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7, 2018, Proceedings / [ed] Joaquin Garcia-Alfaro, Jordi Herrera-Joancomartí, Giovanni Livraga, Ruben Rios, Cham: Springer, 2018, Vol. 11025, p. 422-430Conference paper, Published paper (Refereed)
Abstract [en]

Machine learning, data mining and statistics are used to analyze the data and to build models from them. Data privacy for big data needs to find a compromise between data analysis and disclosure risk. Privacy by design machine learning algorithms need to take into account the space of models and the relationship between the data that generates the models and the models themselves. In this paper we propose the use of probabilistic metric spaces for comparing these models.

Place, publisher, year, edition, pages
Cham: Springer, 2018. Vol. 11025, p. 422-430
Series
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 11025
Keywords [en]
Data privacy, Integral privacy, Probabilistic metric spaces
National Category
Computer Sciences
Research subject
Skövde Artificial Intelligence Lab (SAIL)
Identifiers
URN: urn:nbn:se:his:diva-17534DOI: 10.1007/978-3-030-00305-0_30ISI: 000477970100030ISBN: 978-3-030-00305-0 (electronic)ISBN: 978-3-030-00304-3 (print)OAI: oai:DiVA.org:his-17534DiVA, id: diva2:1343180
Conference
2nd International Workshop on Cryptocurrencies and Blockchain Technology (CBT) / 13th International Workshop on Data Privacy Management (DPM), September 6-7, 2018, Barcelona, Spain
Part of project
Disclosure risk and transparency in big data privacy, Swedish Research Council
Funder
Swedish Research Council, 2016-03346
Note

CC BY 4.0

Also part of the Security and Cryptology book sub series (LNSC, volume 11025)

Partial support from the Vetenskapsrådet project “Disclosure risk and transparency in big data privacy” (VR 2016-03346, 2017-2020), and Spanish project TIN2017-87211-R is gratefully acknowledged.

DRIAT

Available from: 2019-08-15 Created: 2019-08-15 Last updated: 2021-08-18Bibliographically approved

Open Access in DiVA

fulltext(281 kB)244 downloads
File information
File name FULLTEXT01.pdfFile size 281 kBChecksum SHA-512
42c4e0478f7d3368d59ae99f7a41efe5c0537d7e2a247007ebbf4bf6382340188b4fe49169575e7a27ed4d7512a6e98bc9f863f502398723f4b2699a62d88c2b
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Torra, Vicenç

Search in DiVA

By author/editor
Torra, Vicenç
By organisation
School of InformaticsThe Informatics Research Centre
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 244 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 400 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf