A Genetic Algorithm with Multiple Populations to Reduce Fuel Consumption in Supply Chain
2021 (English)In: International Journal of Transportation Engineering, ISSN 2322-259X, Vol. 8, no 3, p. 225-246Article in journal (Refereed) Published
Abstract [en]
Reducing fuel consumption by transportation fleet in a supply chain, reduces transportation costs and consequently, the product final cost. Moreover, it reduces environmental pollution, and in some cases, it helps governments constitute less subsidies for fuels. In this paper, a supply chain scheduling is studied, with the two objective functions of minimizing the total fuel consumption, and the total order delivery time. After presenting the mathematical model of the problem, a genetic algorithm, named Social Genetic Algorithm (SGA) is proposed to solve it. The proposed algorithm helps decision makers determine the allocation of orders to the suppliers and vehicles and production and transportation scheduling to minimize total order delivery time and fuel consumption. In order for SGA performance evaluation, its results are compared with another genetic algorithm in the literature and optimal solution. Finally, a sensitivity analysis is performed on SGA. The results of comparisons also show the high performance of SGA. Moreover, by increasing the number of suppliers and vehicles and decreasing the number of orders, the value of the objective function is reduced.
Place, publisher, year, edition, pages
Tarahan Parseh Transportation Research Institute , 2021. Vol. 8, no 3, p. 225-246
Keywords [en]
Transportation, Fuel consumption, Supply chain management, Routing, Genetic algorithm
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Production and Automation Engineering
Identifiers
URN: urn:nbn:se:his:diva-17494OAI: oai:DiVA.org:his-17494DiVA, id: diva2:1340736
Note
Accepted Manuscript Available Online from 28 July 2019
CC BY 4.0
2019-08-062019-08-062021-02-18Bibliographically approved