Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of next-generation sequencing as a tool for determining the presence of pathogens in clinical samples
University of Skövde, School of Bioscience.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
Abstract [en]

Metagenomic sequencing is an increasingly popular way of determining microbial diversity from environmental and clinical samples. By specifically targeting the 16S rRNA gene found in all bacteria, classifications of pathogens can be determined based on the variable and conserved regions found in the gene. Metagenomic sequencing can therefore highlight the vast difference in microbiological diversity between culture-dependent and culture-independent methods. Today, this has expanded into various next-generation sequencing platforms which can provide massively parallel sequencing of the target fragment. One of these platforms is Ion-torrent, which can be utilized for targeting the 16S rRNA gene and with the help of bioinformatics pipelines be able to classify pathogens using the bacteria’s own variable and conserved regions. The overall aim of the present work is to evaluate the clinical use of Ion-torrent 16S ribosomal RNA sequencing for determining pathogenic species from clinical samples, but also to set up a pipeline for clinical practice. Optimal DNA-extraction and quantification methods were determined towards each evaluated sample-type and DNA-eluates were sent for 16S rRNA Sanger and Next-generation sequencing. The result indicated that the next-generation sequencing shows a concordance in results towards the culturing-based method, but also the importance of experimental design and effective quality trimming of the NGS data. The conclusion of the project is that the Ion-torrent pipeline provided by the Public Health Agency of Sweden shows great promise in determining pathogens from clinical samples. However, there is still a lot of validation and standardisations needed for the successful implementation into a clinical setting.

Place, publisher, year, edition, pages
2019. , p. 44
Keywords [en]
NGS, next generation sequencing, clinical microbiology, systems biology
National Category
Bioinformatics and Systems Biology Microbiology
Identifiers
URN: urn:nbn:se:his:diva-17374OAI: oai:DiVA.org:his-17374DiVA, id: diva2:1334559
External cooperation
Unilabs Skövde
Subject / course
Systems Biology
Educational program
Biomarkers in Molecular Medicine - Master's Programme 120 ECTS
Supervisors
Examiners
Available from: 2019-07-03 Created: 2019-07-03 Last updated: 2019-07-03Bibliographically approved

Open Access in DiVA

fulltext(2570 kB)337 downloads
File information
File name FULLTEXT01.pdfFile size 2570 kBChecksum SHA-512
00170e8a6518e11f446c5b16f28041a9fd3ca8320faea3ebfd6355ff6bfbd7dee56b145b2efd23315a65bcd421855cf8933c70fa78adf6195b6d6bf2c446c92f
Type fulltextMimetype application/pdf

By organisation
School of Bioscience
Bioinformatics and Systems BiologyMicrobiology

Search outside of DiVA

GoogleGoogle Scholar
Total: 337 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 650 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf