Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Visual Data Analysis
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0002-2415-7243
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0001-8884-2154
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0001-6245-5850
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0003-2900-9335
2019 (English)In: Data science in Practice / [ed] Alan Said, Vicenç Torra, Springer, 2019, p. 133-155Chapter in book (Refereed)
Abstract [en]

Data Science offers a set of powerful approaches for making new discoveries from large and complex data sets. It combines aspects of mathematics, statistics, machine learning, etc. to turn vast amounts of data into new insights and knowledge. However, the sole use of automatic data science techniques for large amounts of complex data limits the human user’s possibilities in the discovery process, since the user is estranged from the process of data exploration. This chapter describes the importance of Information Visualization (InfoVis) and visual analytics (VA) within data science and how interactive visualization can be used to support analysis and decision-making, empowering and complementing data science methods. Moreover, we review perceptual and cognitive aspects, together with design and evaluation methodologies for InfoVis and VA.

Place, publisher, year, edition, pages
Springer, 2019. p. 133-155
Series
Studies in Big Data, ISSN 2197-6503, E-ISSN 2197-6511 ; 46
National Category
Computer and Information Sciences Computer Sciences Other Computer and Information Science
Research subject
Skövde Artificial Intelligence Lab (SAIL)
Identifiers
URN: urn:nbn:se:his:diva-16810DOI: 10.1007/978-3-319-97556-6_8ISI: 000464719500009ISBN: 978-3-319-97556-6 (electronic)ISBN: 978-3-319-97555-9 (print)OAI: oai:DiVA.org:his-16810DiVA, id: diva2:1306599
Available from: 2019-04-24 Created: 2019-04-24 Last updated: 2020-06-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Bae, JuheeFalkman, GöranHelldin, ToveRiveiro, Maria

Search in DiVA

By author/editor
Bae, JuheeFalkman, GöranHelldin, ToveRiveiro, Maria
By organisation
School of InformaticsThe Informatics Research Centre
Computer and Information SciencesComputer SciencesOther Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1263 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf