his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Approximating Robust Linear Regression With An Integral Privacy Guarantee
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0002-2564-0683
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0002-0368-8037
2018 (English)In: 2018 16th Annual Conference on Privacy, Security and Trust (PST) / [ed] Kieran McLaughlin, Ali Ghorbani, Sakir Sezer, Rongxing Lu, Liqun Chen, Robert H. Deng, Paul Miller, Stephen Marsh, Jason Nurse, IEEE, 2018, p. 85-94Conference paper, Published paper (Refereed)
Abstract [en]

Most of the privacy-preserving techniques suffer from an inevitable utility loss due to different perturbations carried out on the input data or the models in order to gain privacy. When it comes to machine learning (ML) based prediction models, accuracy is the key criterion for model selection. Thus, an accuracy loss due to privacy implementations is undesirable. The motivation of this work, is to implement the privacy model "integral privacy" and to evaluate its eligibility as a technique for machine learning model selection while preserving model utility. In this paper, a linear regression approximation method is implemented based on integral privacy which ensures high accuracy and robustness while maintaining a degree of privacy for ML models. The proposed method uses a re-sampling based estimator to construct linear regression model which is coupled with a rounding based data discretization method to support integral privacy principles. The implementation is evaluated in comparison with differential privacy in terms of privacy, accuracy and robustness of the output ML models. In comparison, integral privacy based solution provides a better solution with respect to the above criteria.

Place, publisher, year, edition, pages
IEEE, 2018. p. 85-94
Series
Annual Conference on Privacy Security and Trust-PST, ISSN 1712-364X
Keywords [en]
Integral privacy, Linear regression, Privacy-preserving machine learning
National Category
Computer Sciences
Research subject
Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science; INF303 Information Security
Identifiers
URN: urn:nbn:se:his:diva-16573DOI: 10.1109/PST.2018.8514161ISI: 000454683600008Scopus ID: 2-s2.0-85063441298ISBN: 978-1-5386-7494-9 (print)ISBN: 978-1-5386-7493-2 (electronic)OAI: oai:DiVA.org:his-16573DiVA, id: diva2:1280307
Conference
16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Northern Ireland, August 28-30, 2018
Available from: 2019-01-18 Created: 2019-01-18 Last updated: 2019-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Senavirathne, NavodaTorra, Vicenç

Search in DiVA

By author/editor
Senavirathne, NavodaTorra, Vicenç
By organisation
School of InformaticsThe Informatics Research Centre
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf