his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Learning Fuzzy Measures for Aggregation in Fuzzy Rule-Based Models
Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain.
Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain.
Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain.
Ophthalmic Service, University Hospital Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain.
Show others and affiliations
2018 (English)In: Modeling Decisions for Artificial Intelligence: 15th International Conference, MDAI 2018, Mallorca, Spain, October 15–18, 2018, Proceedings / [ed] Vicenç Torra, Yasuo Narukawa, Isabel Aguiló, Manuel González-Hidalgo, Springer, 2018, p. 114-127Conference paper, Published paper (Refereed)
Abstract [en]

Fuzzy measures are used to express background knowledge of the information sources. In fuzzy rule-based models, the rule confidence gives an important information about the final classes and their relevance. This work proposes to use fuzzy measures and integrals to combine rules confidences when making a decision. A Sugeno $$\lambda $$ -measure and a distorted probability have been used in this process. A clinical decision support system (CDSS) has been built by applying this approach to a medical dataset. Then we use our system to estimate the risk of developing diabetic retinopathy. We show performance results comparing our system with others in the literature. 

Place, publisher, year, edition, pages
Springer, 2018. p. 114-127
Series
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 11144
Keywords [en]
Aggregation functions, Choquet integral, Diabetic retinopathy, Fuzzy measures, Fuzzy rule-based systems, Sugeno integral, Artificial intelligence, Decision support systems, Eye protection, Fuzzy rules, Integral equations, Risk perception, Sugeno integrals, Fuzzy inference
National Category
Computer Sciences
Research subject
Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science
Identifiers
URN: urn:nbn:se:his:diva-16416DOI: 10.1007/978-3-030-00202-2_10Scopus ID: 2-s2.0-85055680053ISBN: 978-3-030-00201-5 (print)ISBN: 978-3-030-00202-2 (electronic)OAI: oai:DiVA.org:his-16416DiVA, id: diva2:1264382
Conference
International Conference on Modeling Decisions for Artificial Intelligence MDAI 2018, 15 October 2018 through 18 October 2018, Mallorca, Spain
Note

Also part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 11144)

Available from: 2018-11-20 Created: 2018-11-20 Last updated: 2019-02-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Torra, Vicenç

Search in DiVA

By author/editor
Torra, Vicenç
By organisation
School of InformaticsThe Informatics Research Centre
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf