Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-level management of discrete event simulation models in a product lifecycle management framework
University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID iD: 0000-0001-7612-4470
University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID iD: 0000-0001-9690-890X
University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID iD: 0000-0003-0111-1776
University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID iD: 0000-0002-0880-2572
Show others and affiliations
2018 (English)In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 25, p. 74-81Article in journal (Refereed) Published
Abstract [en]

Discrete event simulation (DES) models imitates the behavior of a production system. Models can be developed to reflect different levels of the production system, e.g supply chain level or manufacturing line level. Product Lifecycle Management (PLM) systems have been developed in order to manage product and manufacturing related data. DES models is one kind of product lifecycle’s data which can be managed by a PLM system. This paper presents a method and its implementation for management of interacting multi-level models utilizing a PLM system.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 25, p. 74-81
Keywords [en]
Discrete event simulation, Product lifecycle management, Multi-level simulation
National Category
Other Engineering and Technologies not elsewhere specified
Research subject
Production and Automation Engineering
Identifiers
URN: urn:nbn:se:his:diva-16074DOI: 10.1016/j.promfg.2018.06.059ISI: 000547903500010Scopus ID: 2-s2.0-85065662579OAI: oai:DiVA.org:his-16074DiVA, id: diva2:1241596
Conference
8th Swedish Production Symposium, SPS 2018, Stockholm, Sweden, May 16-18, 2018
Available from: 2018-08-24 Created: 2018-08-24 Last updated: 2024-05-16Bibliographically approved
In thesis
1. Managing virtual factory artifacts in extended product lifecycle management systems
Open this publication in new window or tab >>Managing virtual factory artifacts in extended product lifecycle management systems
2021 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

Reusing previously designed virtual models and the knowledge extracted from running them can reduce time and costs. Since these models are representations of physical artifacts, they have been built based on some criteria, assumptions, and limitations. Being aware of these criteria, assumptions, and limitations, as well as having information regarding things like the purpose of the virtual model, can help a user evaluate the model for reuse in another study. The knowledge gained by generating and using virtual models also offers a significant advantage when making decisions about whether to reuse them and how to reuse them in new studies and experiments. This historical information and knowledge can be derived from the engineering activities performed when creating and using those virtual models. The research presented in this dissertation deals with the management of virtual factory artifacts, including virtual models, their related data, and historical information and knowledge in product lifecycle management (PLM) platforms. Since PLM systems are developed to manage product- and production-related data, they are suitable for managing virtual models as well, but they are incapable of handling the knowledge generated without appropriate extension. Therefore this research focuses on extending PLM systems so that they can manage historical information related to virtual models, in addition to managing the data and knowledge generated, together with related engineering activities. This management will be based on various requirements, including saving, searching, and retrieving virtual factory artifacts in different projects, studies, and engineering activities. A new information model was developed taking into account four aspects of management, namely: (1) hierarchical structures in PLM systems and manufacturing data; (2) the lifecycle of manufacturing systems; (3) projects, studies, and experiments; and (4) engineering activities, provenance data, and knowledge management. In addition to managing knowledge extracted from virtual models and their utilization, ontology-based knowledge management for virtual models and engineering activities is also provided to build up an ontology in this domain. Ultimately, the developed information model was implemented in several application studies in the industry. These studies cover different types of virtual models from various levels of manufacturing systems. The applicability of the invented information model in these application studies has confirmed its capability to manage and link virtual factory artifacts in a PLM context.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2021. p. 154
Series
Dissertation Series ; 38
Keywords
Virtual models, product lifecycle management, information model, knowledge management, ontology, manufacturing data, provenance, manufacturing systems
National Category
Information Systems
Research subject
Production and Automation Engineering
Identifiers
urn:nbn:se:his:diva-19560 (URN)978-91-984919-2-0 (ISBN)
Public defence
2021-04-09, ASSAR, Skövde, 10:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Available from: 2021-03-30 Created: 2021-03-30 Last updated: 2023-10-30Bibliographically approved

Open Access in DiVA

fulltext(914 kB)534 downloads
File information
File name FULLTEXT02.pdfFile size 914 kBChecksum SHA-512
338aaddb32dd604c039c80796ef85e11b2605184e83a3e97b247563ca1e641793dbb6e31ceca65d5feb64f2a8d24a74ef9964a967f0a8a05ba0f7ce4506d3de2
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Morshedzadeh, ImanOscarsson, JanNg, Amos H. C.Aslam, TehseenFrantzén, Marcus

Search in DiVA

By author/editor
Morshedzadeh, ImanOscarsson, JanNg, Amos H. C.Aslam, TehseenFrantzén, Marcus
By organisation
School of Engineering ScienceThe Virtual Systems Research Centre
In the same journal
Procedia Manufacturing
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar
Total: 534 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1225 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf