Pressure sensitive adhesives provide high toughness at low stress and stiffness. These properties are beneficial for bimaterial bonding. In the present study the tape is modelled with a cohesive layer characterized by a cohesive law. This is suitable for FE-analysis of bonded structures. The cohesive law is measured using a method based on the path independent property of the J-integral. Complementing an earlier study, we here focus on influences of loading rate on the properties of the pressure sensitive adhesive. Transparent PMMA substrates are used with the transparent tape in Double Cantilever Beam specimens. The transparency of both the tape and the substrates provides the possibility of in-situ studies of the fracture process. The results indicate that the fracture energy levels off at about 1 kN/m for small loading rates. Moreover, the cohesive law also appears to level off below an engineering strain rate of about 2 s-1. The cohesive law contains two peak stresses. The first is associated with the nucleation of cavities in the tape. This occurs at a stress level comparable to the critical stress associated with an unbonded growth rate of a spherical cavity in rubber. The second peak stress is associated to the breaking down of walls formed between the fully developed cavities. This process precedes the final fracture of the tape. It also appears as nucleation of cavities is influenced by the strain rate where slower rates give more time for cavities to nucleate. This results in larger cavity density at smaller loading rates. The results also indicate a similarity of the effects of loading rate and ageing of the macroscopic properties of the present pressure sensitive adhesive.
© 2018 Elsevier Ltd. All rights reserved. The RightsLink Digital Licensing and Rights Management Service (including RightsLink for Open Access) is available (A) to users of copyrighted works found at the websites of participating publishers who are seeking permissions or licenses to use those works, and (B) to authors of articles and other manuscripts who are seeking to pay author publication charges in connection with the submission of their works to publishers.