his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: Thermal, mechanical and oxygen barrier properties
KTH Royal Institute of Technology.
Lund University.
KTH Royal Institute of Technology.
KTH Royal Institute of Technology.
Show others and affiliations
2016 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 136, p. 146-153Article in journal (Refereed) Published
Abstract [en]

In this study, new wood-inspired films were developed from microfibrillated cellulose and galactoglucomannan-lignin networks isolated from chemothermomechanical pulping side streams and cross-linked using laccase enzymes. To the best of our knowledge, this is the first time that cross-linked galactoglucomannan-lignin networks have been used for the potential development of composite films inspired by woody-cell wall formation. Their capability as polymeric matrices was assessed based on thermal, structural, mechanical and oxygen permeability analyses. The addition of different amounts of microfibrillated cellulose as a reinforcing agent and glycerol as a plasticizer on the film performances was evaluated. In general, an increase in microfibrillated cellulose resulted in a film with better thermal, mechanical and oxygen barrier performance. However, the presence of glycerol decreased the thermal stability, stiffness and oxygen barrier properties of the films but improved their elongation. Therefore, depending on the application, the film properties can be tailored by adjusting the amounts of reinforcing agent and plasticizer in the film formulation.

Place, publisher, year, edition, pages
2016. Vol. 136, p. 146-153
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:his:diva-15873DOI: 10.1016/j.carbpol.2015.09.038ISI: 000365972000019Scopus ID: 2-s2.0-84942156351OAI: oai:DiVA.org:his-15873DiVA, id: diva2:1228970
Available from: 2015-12-08 Created: 2018-06-29 Last updated: 2018-08-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Moriana, Rosana

Search in DiVA

By author/editor
Moriana, Rosana
In the same journal
Carbohydrate Polymers
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 87 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf