The literature discusses several extensions of fuzzy sets. AIFS, IVFS, HFS, type-2 fuzzy sets are some of them. Interval valued fuzzy sets is one of the extensions where the membership is not a single value but an interval. Atanassov Intuitionistic fuzzy sets, for short AIFS, are defined in terms of two values for each element: membership and non-membership. In this paper we discuss AIFS and their relationship with fuzzy measures. The discussion permits us to define counter AIFS (cIFS) and discretionary AIFS (dIFS). They are extensions of fuzzy sets that are based on fuzzy measures.