his.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Tuning of Multiple Parameter Sets in Evolutionary Algorithms
University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. (Produktion och automatiseringsteknik, Production and Automation Engineering)
University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID iD: 0000-0001-5436-2128
University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID iD: 0000-0003-0111-1776
2016 (English)In: GECCO'16: Proceedings of the 2016 genetic and evolutionary computation conference, Association for Computing Machinery (ACM), 2016, 533-540 p.Conference paper (Refereed)
Abstract [en]

Evolutionary optimization algorithms typically use one or more parameters that control their behavior. These parameters, which are often kept constant, can be tuned to improve the performance of the algorithm on specific problems. However, past studies have indicated that the performance can be further improved by adapting the parameters during runtime. A limitation of these studies is that they only control, at most, a few parameters, thereby missing potentially beneficial interactions between them. Instead of finding a direct control mechanism, the novel approach in this paper is to use different parameter sets in different stages of an optimization. These multiple parameter sets, which remain static within each stage, are tuned through extensive bi-level optimization experiments that approximate the optimal adaptation of the parameters. The algorithmic performance obtained with tuned multiple parameter sets is compared against that obtained with a single parameter set. For the experiments in this paper, the parameters of NSGA-II are tuned when applied to the ZDT, DTLZ and WFG test problems. The results show that using multiple parameter sets can significantly increase the performance over a single parameter set.

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM), 2016. 533-540 p.
Keyword [en]
evolutionary algorithms, parameter tuning, multiple parameters, multi-objective optimization
National Category
Computer Science
Identifiers
URN: urn:nbn:se:his:diva-13056DOI: 10.1145/2908812.2908899ISI: 000382659200069ScopusID: 2-s2.0-84985916855ISBN: 978-1-4503-4206-3OAI: oai:DiVA.org:his-13056DiVA: diva2:1040540
Conference
Genetic and Evolutionary Computation Conference (GECCO), Denver, USA, July 20-24, 2016.
Available from: 2016-10-27 Created: 2016-10-27 Last updated: 2016-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Andersson, MartinBandaru, SunithNg, Amos H. C.
By organisation
School of Engineering ScienceThe Virtual Systems Research Centre
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 139 hits
ReferencesLink to record
Permanent link

Direct link