his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Innovative Design and Analysis of Production Systems by Multi-objective Optimization and Data Mining
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. School of Engineering, Jönköping University, Sweden . (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0003-0111-1776
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0001-5436-2128
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. Volvo Car Corporation, Sweden . (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0002-4086-3877
2016 (engelsk)Inngår i: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 50, s. 665-671Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents an innovative approach for the design and analysis of production systems using multi-objective optimization and data mining. The innovation lies on how these two methods using different computational intelligence algorithms can be synergistically integrated and used interactively by production systems designers to support their design decisions. Unlike ordinary optimization approaches for production systems design which several design objectives are linearly combined into a single mathematical function, multi-objective optimization that can generate multiple design alternatives and sort their performances into an efficient frontier can enable the designer to have a more complete picture about how the design decision variables, like number of machines and buffers, can affect the overall performances of the system. Such kind of knowledge that can be gained by plotting the efficient frontier cannot be sought by single-objective based optimizations. Additionally, because of the multiple optimal design alternatives generated, they constitute a dataset that can be fed into some data mining algorithms for extracting the knowledge about the relationships among the design variables and the objectives. This paper addresses the specific challenges posed by the design of discrete production systems for this integrated optimization and data mining approach and then outline a new interactive data mining algorithm developed to meet these challenges, illustrated with a real-world production line design example.

sted, utgiver, år, opplag, sider
Elsevier, 2016. Vol. 50, s. 665-671
Emneord [en]
Production Systems, Multi-Objective Optimization, Data Mining
HSV kategori
Forskningsprogram
Teknik; Produktion och automatiseringsteknik
Identifikatorer
URN: urn:nbn:se:his:diva-12815DOI: 10.1016/j.procir.2016.04.159ISI: 000387666600112Scopus ID: 2-s2.0-84986608440OAI: oai:DiVA.org:his-12815DiVA, id: diva2:955319
Konferanse
26th CIRP Design Conference
Tilgjengelig fra: 2016-08-25 Laget: 2016-08-25 Sist oppdatert: 2018-03-28bibliografisk kontrollert

Open Access i DiVA

fulltext(779 kB)518 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 779 kBChecksum SHA-512
0f8e61c987ab6b8b387eb521b531121efdc7e88215074c51ec1f1a4d2df02b5b8afe0887c6db7d9bec18084f2aa18f3865773e4ce26eedda84b5440e66600f09
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ng, Amos H.C.Bandaru, SunithFrantzén, Marcus

Søk i DiVA

Av forfatter/redaktør
Ng, Amos H.C.Bandaru, SunithFrantzén, Marcus
Av organisasjonen
I samme tidsskrift
Procedia CIRP

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 518 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 837 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf