his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conditional Regression Model for Prediction of Anthropometric Variables
Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden. (User Centred Product Design)
Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden. (Department of Product and Production Development)
Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle. (User Centred Product Design)
Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
2013 (Engelska)Ingår i: 2013 Digital human modeling symposium / [ed] Matt Reed, 2013Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In digital human modelling (DHM) systems consideration of anthropometry is central. Important functionality in DHM tools is the regression model, i.e. the possibility to predict a complete set of measurements based on a number of defined independent anthropometric variables. The accuracy of a regression model is measured by how well the model predicts dependent variables based on independent variables, i.e. known key anthropometric measurements. In literature, existing regression models often use stature and/or body weight as independent variables in so-called flat regressions models which can produce estimations with large errors when there are low correlations between the independent and dependent variables. This paper suggests a conditional regression model that utilise all known measurements as independent variables when predicting each unknown dependent variable. The conditional regression model is compared to a flat regression model, using stature and weight as independent variables, and a hierarchical regression model that uses geometric and statistical relationships between body measurements to create specific linear regression equations in a hierarchical structure. The accuracy of the models is assessed by evaluating the coefficient of determination, R2 and the root-mean-square deviation (RMSD). The results from the study show that using a conditional regression model that makes use of all known variables to predict the values of unknown measurements is advantageous compared to the flat and hierarchical regression models. Both the conditional linear regression model and the hierarchical regression model have the advantage that when more measurements are included the models will give a better prediction of the unknown measurements compared to the flat regression model based on stature and weight. A conditional linear regression model has the additional advantage that any measurement can be used as independent variable. This gives the possibility to only include measurements that have a direct connection to the design dimensions being sought. Utilising the conditional regression model would create digital manikins with enhanced accuracy that would produce more realistic and accurate simulations and evaluations when using DHM tools for the design of products and workplaces.

Ort, förlag, år, upplaga, sidor
2013.
Nyckelord [en]
Anthropometry, Regression, Correlation, Multivariate, Prediction, Digital Human Modelling
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Forskningsämne
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-8974OAI: oai:DiVA.org:his-8974DiVA, id: diva2:711557
Konferens
2nd International Digital Human Modeling Symposium
Tillgänglig från: 2014-04-10 Skapad: 2014-04-10 Senast uppdaterad: 2017-11-27Bibliografiskt granskad

Open Access i DiVA

dhm2013_submission_58 - Conditional Regression Model for Prediction of Anthropometric Variables(138 kB)691 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 138 kBChecksumma SHA-512
a8786ccfab7cb4a308bfc9726246ec2fb1b51b5c48b0bd370d162ecb6a60580c208a680661c7c8c4f7d7167b62b22bfd161d66414f93f57d3866869212058ee8
Typ fulltextMimetyp application/pdf

Övriga länkar

dhm2013_submission_58.pdf

Personposter BETA

Brolin, ErikHögberg, Dan

Sök vidare i DiVA

Av författaren/redaktören
Brolin, ErikHögberg, Dan
Av organisationen
Forskningscentrum för Virtuella systemInstitutionen för teknik och samhälle
Produktionsteknik, arbetsvetenskap och ergonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 691 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1162 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf