In this article, we use a recurrent neural network including four-cell core architecture to model the walking gait and implement it with the simulated and physical NAO robot. Meanwhile, inspired by the biological CPG models, we propose a simplified CPG model which comprises motorneurons, interneurons, sensor neurons and the simplified spinal cord. Within this model, the CPGs do not directly output trajectories to the servo motors. Instead, they only work to maintain the phase relation among ipsilateral and contralateral limbs. The final output is dependent on the integration of CPG signals, outputs of interneurons, motor neurons and sensor neurons (sensory feedback).