his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulation-Based Innovization Using Data Mining for Production Systems Analysis
Högskolan i Skövde, Institutionen för teknik och samhälle. Högskolan i Skövde, Forskningscentrum för Virtuella system.ORCID-id: 0000-0003-0111-1776
Högskolan i Skövde, Institutionen för teknik och samhälle. Högskolan i Skövde, Forskningscentrum för Virtuella system.
Högskolan i Skövde, Institutionen för teknik och samhälle. Högskolan i Skövde, Forskningscentrum för Virtuella system.
Högskolan i Skövde, Institutionen för teknik och samhälle. Högskolan i Skövde, Forskningscentrum för Virtuella system.
2011 (engelsk)Inngår i: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing / [ed] Lihui Wang, Amos H. C. Ng, Kalyanmoy Deb, Springer London, 2011, s. 401-429Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

This chapter introduces a novel methodology for the analysis and optimization of production systems. The methodology is based on the innovization procedure, originally introduced for unveiling new and innovative design principles in engineering design problems. Although the innovization method is based on multi-objective optimization and post-optimality analyses of optimised solutions, it stretches the scope beyond an optimization task and attempts to discover new design/operational rules/principles relating to decision variables and objectives, so that a deeper understanding of the problem can be obtained. By integrating the concept of innovization with discrete-event simulation and data mining techniques, a new set of powerful tools can be developed for general systems analysis, particularly suitable for production systems. The uniqueness of the integrated approach proposed in this chapter lies on applying data mining to the data sets generated from simulation-based multi-objective optimization, in order to automatically or semi-automatically discover and interpret the hidden relationships and patterns for optimal production systems design/reconfiguration.

sted, utgiver, år, opplag, sider
Springer London, 2011. s. 401-429
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-5839DOI: 10.1007/978-0-85729-652-8_15ISBN: 978-0-85729-617-7 ISBN: 978-0-85729-652-8 OAI: oai:DiVA.org:his-5839DiVA, id: diva2:524779
Tilgjengelig fra: 2012-05-03 Laget: 2012-05-03 Sist oppdatert: 2017-11-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Ng, Amos H. C.Dudas, CatarinaDeb, Kalyanmoy

Søk i DiVA

Av forfatter/redaktør
Ng, Amos H. C.Dudas, CatarinaDeb, Kalyanmoy
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 1120 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf