his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A synergy of multi-objective optimization and data mining for the analysis of a flexible flow shop
Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle.
Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle.ORCID-id: 0000-0002-4086-3877
Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle.ORCID-id: 0000-0003-0111-1776
2011 (engelsk)Inngår i: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 27, nr 4, s. 687-695Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A method for analyzing production systems by applying multi-objective optimization and data mining techniques on discrete-event simulation models, the so-called Simulation-based Innovization (SBI) is presented in this paper. The aim of the SBI analysis is to reveal insight on the parameters that affect the performance measures as well as to gain deeper understanding of the problem, through post-optimality analysis of the solutions acquired from multi-objective optimization. This paper provides empirical results from an industrial case study, carried out on an automotive machining line, in order to explain the SBI procedure. The SBI method has been found to be particularly siutable in this case study as the three objectives under study, namely total tardiness, makespan and average work-in-process, are in conflict with each other. Depending on the system load of the line, different decision variables have been found to be influencing. How the SBI method is used to find important patterns in the explored solution set and how it can be valuable to support decision making in order to improve the scheduling under different system loadings in the machining line are addressed.

sted, utgiver, år, opplag, sider
Elsevier, 2011. Vol. 27, nr 4, s. 687-695
Emneord [en]
Data mining, Decision trees, Post-optimality analysis, Simulation-based optimization
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-4860DOI: 10.1016/j.rcim.2010.12.005ISI: 000291458900005Scopus ID: 2-s2.0-79955664950OAI: oai:DiVA.org:his-4860DiVA, id: diva2:414218
Konferanse
20th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), California State Univ, Oakland, CA, 2010
Tilgjengelig fra: 2011-05-02 Laget: 2011-05-02 Sist oppdatert: 2017-12-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Dudas, CatarinaFrantzén, MarcusNg, Amos H.C.

Søk i DiVA

Av forfatter/redaktør
Dudas, CatarinaFrantzén, MarcusNg, Amos H.C.
Av organisasjonen
I samme tidsskrift
Robotics and Computer-Integrated Manufacturing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1018 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf