Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conformal Prediction for Distribution-Independent Anomaly Detection in Streaming Vessel Data
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (SAIL)
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (SAIL)
2010 (engelsk)Inngår i: StreamKDD '10: Proceedings of the First International Workshop on Novel Data Stream Pattern Mining Techniques, Association for Computing Machinery (ACM), 2010, s. 47-55Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper presents a novel application of the theory of conformal prediction for distribution-independent on-line learning and anomaly detection. We exploit the fact that conformal predictors give valid prediction sets at specified confidence levels under the relatively weak assumption that the (normal) training data together with (normal) observations to be predicted have been generated from the same distribution. If the actual observation is not included in the possibly empty prediction set, it is classified as anomalous at the corresponding significance level. Interpreting the significance level as an upper bound of the probability that a normal observation is mistakenly classified as anomalous, we can conveniently adjust the sensitivity to anomalies while controlling the rate of false alarms without having to find any application specific thresholds. The proposed method has been evaluated in the domain of sea surveillance using recorded data assumed to be normal. The validity of the prediction sets is justified by the empirical error rate which is just below the significance level. In addition, experiments with simulated anomalous data indicate that anomaly detection sensitivity is superior to that of two previously proposed methods.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM), 2010. s. 47-55
Emneord [en]
Anomaly detection, conformal prediction, sea surveillance
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-4656DOI: 10.1145/1833280.1833287Scopus ID: 2-s2.0-77956247958ISBN: 978-1-4503-0226-5 OAI: oai:DiVA.org:his-4656DiVA, id: diva2:392598
Konferanse
1st International Workshop on Novel Data Stream Pattern Mining Techniques, StreamKDD'10, Held in Conjunction with the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining; Washington, DC; 25 July 2010 through 25 July 2010
Tilgjengelig fra: 2011-01-27 Laget: 2011-01-27 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Laxhammar, RikardFalkman, Göran

Søk i DiVA

Av forfatter/redaktør
Laxhammar, RikardFalkman, Göran
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 228 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf