his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clustering Genes by Using Different Types of Genomic Data and Self-Organizing Maps
Högskolan i Skövde, Institutionen för vård och natur.
2008 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

The aim of the project was to identify biologically relevant novel gene clusters by using combined genomic data instead of using only gene expression data in isolation. The clustering algorithm based on self-organizing maps (Kasturi et al., 2005) was extended and implemented in order to use gene location data together with the gene expression and the motif occurrence data for gene clustering. A distance function was defined to be used with gene location data. The algorithm was also extended in order to use vector angle distance for gene expression data. Arabidopsis thaliana is chosen as a data source to evaluate the developed algorithm. A test data set was created by using 100 Arabidopsis genes that have gene expression data with seven different time points during cold stress condition, motif occurrence data which indicates the occurrence frequency of 614 different motifs and the chromosomal location data of each gene. Gene Ontology (http://www.geneontology.org) and TAIR (http://arabidopsis.org) databases were used to find the molecular function and biological process information of each gene in order to examine the biological accuracy of newly discovered clusters after using combined genomic data. The biological evaluation of the results showed that using combined genomic data to cluster genes resulted in new biologically relevant clusters.

sted, utgiver, år, opplag, sider
2008. , s. 60
Emneord [en]
clustering, self-organizing maps, information fusion, gene analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-2265OAI: oai:DiVA.org:his-2265DiVA, id: diva2:37815
Presentation
(arabisk)
Uppsök
Life Earth Science
Veileder
Examiner
Tilgjengelig fra: 2008-10-24 Laget: 2008-10-14 Sist oppdatert: 2010-02-18bibliografisk kontrollert

Open Access i DiVA

fulltekst(1533 kB)863 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1533 kBChecksum SHA-512
d94ebd0b73d38240f2cb370def9ebcae0be7964107180dd324096ea7cef79d8ed54bf625b11686bc8de22749d09f8e62a053a24c933f223849ce07bca8ca7877
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Özdogan, Alper
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 863 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 474 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf