his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clustering micro-RNA array data using an information fusion based approach with multiple types of input data
Högskolan i Skövde, Forskningscentrum för Systembiologi. Högskolan i Skövde, Institutionen för vård och natur.ORCID-id: 0000-0003-4697-0590
Yildiz Technical University, Turkey.
Högskolan i Skövde, Forskningscentrum för Systembiologi. Högskolan i Skövde, Institutionen för vård och natur.
Cellartis AB, Göteborg, Sweden.
2010 (Engelska)Ingår i: Proceedings of the ISCA 2nd International Conference on Bioinformatics and Computational Biology, BICoB-2010, March 24-26, 2010, Sheraton Waikiki Hotel, Honolulu, Hawaii, USA / [ed] Hisham Al-Mubaid, International Society for Computers and Their Applications , 2010, s. 151-158Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

MicroRNAs (miRNAs) are small non-coding molecules that have been shown to play key roles in regulating cellular development and to be involved in various diseases. By interfering with their target mRNAs, these molecules inhibit the expression of proteins, either by destabilizing the mRNA molecule or by preventing its translation. It has been suggested that each miRNA can target hundreds of mRNAs, and that one mRNA can be targeted by several miRNAs. This makes it extremely complex to determine the roles of specific miRNAs in the regulation of translation of mRNA. Recent advancements in microarray technology have made large-scale monitoring of miRNA expression possible. However, the size and complexity of these data sets make them challenging to analyze, and improved algorithms are therefore required to facilitate the analysis. In this paper, we present a novel clustering algorithm that uses an Information Fusion (IF) approach to cluster miRNA data, allowing for multiple types of input data to guide the clustering. For evaluation of the algorithm, we used miRNA expression data from human embryonic stem cells and cardiomyocyte-like cells derived thereof. Clusters obtained when using the multiple input data approach were compared to those generated when using only the expression data. Our results show that it is beneficial to include various types of genomic data as input to the clustering process, since it results in clusters of increased biological relevance.

Ort, förlag, år, upplaga, sidor
International Society for Computers and Their Applications , 2010. s. 151-158
Nationell ämneskategori
Naturvetenskap
Forskningsämne
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:his:diva-4316Scopus ID: 2-s2.0-84883562835ISBN: 978-1-880843-76-5 ISBN: 978-161738111-9 OAI: oai:DiVA.org:his-4316DiVA, id: diva2:345264
Konferens
BICoB-2010, 2nd International Conference on Bioinformatics and Computational Biology (BICoB), March 24-26, 2010, Honolulu, Hawaii, USA
Tillgänglig från: 2010-08-24 Skapad: 2010-08-24 Senast uppdaterad: 2017-11-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Personposter BETA

Synnergren, JaneOlsson, BjörnSartipy, Peter

Sök vidare i DiVA

Av författaren/redaktören
Synnergren, JaneOlsson, BjörnSartipy, Peter
Av organisationen
Forskningscentrum för SystembiologiInstitutionen för vård och natur
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1400 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf