his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving maritime anomaly detection and situation awareness through interactive visualization
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.ORCID-id: 0000-0003-2900-9335
Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Skövde Artificial Intelligence Lab (SAIL).ORCID-id: 0000-0001-8884-2154
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.ORCID-id: 0000-0001-6883-2450
2008 (engelsk)Inngår i: Proceedings of the 11th International Conference on Information Fusion (FUSION 2008), IEEE Computer Society, 2008, s. 47-54Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Surveillance of large land, air or sea areas with a multitude of sensor and sensor types typically generates huge amounts of data. Human operators trying to establish individual or collective maritime situation awareness are often overloaded by this information. In order to help them cope with this information overload, we have developed a combined methodology of data visualization, interaction and mining techniques that allows filtering out anomalous vessels, by building a model over normal behavior from which the user can detect deviations. The methodology includes a set of interactive visual representations that support the insertion of the user’s knowledge and experience in the creation, validation and continuous update of the normal model. Additionally, this paper presents a software prototype that implements the suggested methodology.

 

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2008. s. 47-54
Emneord [en]
anomaly detection, interaction, visualization, situation awareness, visual data mining, visual analytics
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3626Scopus ID: 2-s2.0-56749112449ISBN: 978-3-00-024883-2 ISBN: 978-3-8007-3092-6 OAI: oai:DiVA.org:his-3626DiVA, id: diva2:291335
Konferanse
11th International Conference on Information Fusion, FUSION 2008; Cologne; Germany; 30 June 2008 through 3 July 2008
Merknad

Best Student Paper Award.

Tilgjengelig fra: 2010-02-01 Laget: 2010-02-01 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Scopushttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4632191

Personposter BETA

Riveiro, MariaFalkman, GöranZiemke, Tom

Søk i DiVA

Av forfatter/redaktør
Riveiro, MariaFalkman, GöranZiemke, Tom
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 145 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf