his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Interactive Visualization of Normal Behavioral Models and Expert Rules for Maritime Anomaly Detection
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Högskolan i Skövde, Skövde Artificial Intelligence Lab (SAIL).ORCID-id: 0000-0003-2900-9335
Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Skövde Artificial Intelligence Lab (SAIL).ORCID-id: 0000-0001-8884-2154
2009 (engelsk)Inngår i: Computer graphics, imaging & visualisation: New advances and trends / [ed] Ebad Banissi, Muhammad Sarfraz, Jiawan Zhang, Anna Ursyn, Wong Chow Jeng, Mark W. McK. Bannatyne, Jian J. Zhang, Lim Hwee San, and Mao Lin Huang, IEEE Computer Society, 2009, s. 459-466Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Maritime surveillance systems analyze vast amounts of heterogeneous sensor data from a large number of objects. In order to support the operator while monitoring such systems, the identification of anomalous vessels or situations that might need further investigation may reduce the operator’s cognitive load. While it is worth acknowledgingthat many existing mining applications support identification of anomalous behavior, autonomous anomaly detection systems are rarely used in the real world, since the detection of anomalous behavior is normally not a welldefined problem and therefore, human expert knowledge is needed. This calls for the development of interaction components that can support the user in the detection process.

In order to support the comprehension of the knowledge embedded in the system, we propose an interactive way of visualizing expert rules and normal behavioral models built from the data. The overall goal is to facilitate the validation and update of these models and signatures, supporting the insertion of human expert knowledge while improving confidence and trust in the system.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2009. s. 459-466
Serie
International Conference on Computer Graphics Imaging and Visualization
Emneord [en]
interactive visualization, normal behavioral models, rules/signatures, anomaly detection, visual analytics, data mining, maritime situation awareness, AIS data
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3453DOI: 10.1109/CGIV.2009.54ISI: 000275127400077Scopus ID: 2-s2.0-70549087899ISBN: 978-0-7695-3789-4 OAI: oai:DiVA.org:his-3453DiVA, id: diva2:273168
Konferanse
Sixth International Conference on Computer Graphics, Imaging and Visualization: 11-14 August 2009, Tianjin, China
Merknad

KJ: fanns SAIL 2009? På publ.: "Informatics Research Centre, University of Skövde, Sweden"

Tilgjengelig fra: 2009-10-20 Laget: 2009-10-20 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Riveiro, MariaFalkman, Göran

Søk i DiVA

Av forfatter/redaktør
Riveiro, MariaFalkman, Göran
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 154 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf