his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved accuracy of surrogate models using output postprocessing
Högskolan i Skövde, Institutionen för kommunikation och information.
2007 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 20 poäng / 30 hpOppgave
Abstract [en]

Using surrogate approximations (e.g. Kriging interpolation or artifical neural networks) is an established technique for decreasing the execution time of simulation optimization problems. However, constructing surrogate approximations can be impossible when facing complex simulation inputs, and instead one is forced to use a surrogate model, which explicitly attempts to simulate the inner workings of the underlying simulation model. This dissertation has investigated if postprocessing the output of a surrogate model with an artificial neural network can increase its accuracy and value in simulation optimization problems. Results indicate that the technique has potential in that when output post-processing was enabled the accuracy of the surrogate model increased, i.e. its output more losely matched the output of the real simulation model. No apparent improvement in optimization performance could be observed however. It was speculated that this was due to either the optimization algorithm used not taking advantage of the improved accuracy of the surrogate model, or the fact the the improved accuracy of the surrogate model was to small to make any measurable impact. Further investigation of these issues must be conducted in order to get a better understanding of the pros and cons of the technique.

sted, utgiver, år, opplag, sider
Skövde: Institutionen för kommunikation och information , 2007. , s. 33
Emneord [en]
Simulation optimization, Surrogate-assisted simulation optimization, Surrogate approximations, Surrogate models
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-312OAI: oai:DiVA.org:his-312DiVA, id: diva2:2675
Presentation
(engelsk)
Uppsök
Technology
Veileder
Examiner
Tilgjengelig fra: 2007-12-03 Laget: 2007-12-03 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

fulltekst(1040 kB)4993 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1040 kBChecksum SHA-1
9176bd7f2e160bfb7094161b9852068c1fcb67e7dae68898117142d0c742b412d06fe3bd
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 4993 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2821 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf