his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An ensemble approach for increased anomaly detection performance in video surveillance data
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))
2009 (engelsk)Inngår i: Proceedings of the 12th International Conference on Information Fusion (FUSION 2009), Seattle, Washington, USA, 6–9 July 2009, IEEE conference proceedings, 2009, s. 694-701Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The increased societal need for surveillance and the decrease in cost of sensors have led to a number of new challenges. The problem is not to collect data but to use it effectively for decision support. Manual interpretation of huge amounts of data in real-time is not feasible; the operator of a surveillance system needs support to analyze and understand all incoming data. In this paper an approach to intelligent video surveillance is presented, with emphasis on finding behavioural anomalies. Two different anomaly detection methods are compared and combined. The results show that it is possible to best increase the total detection performance by combining two different anomaly detectors rather than employing them independently.

 

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2009. s. 694-701
Emneord [en]
anomaly detection, classifier fusion, CCTV, video content analysis, behaviour classification
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3413ISI: 000273560000090Scopus ID: 2-s2.0-70449359707ISBN: 978-0-9824438-0-4 OAI: oai:DiVA.org:his-3413DiVA, id: diva2:249226
Konferanse
Fusion 2009 : the 12th International Conference on Information Fusion : Grand Hyatt Seattle, Seattle, Washington, USA, 6-9 July, 2009
Tilgjengelig fra: 2009-10-09 Laget: 2009-10-09 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Scopushttp://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5173445%2F5203583%2F05203886.pdf%3Farnumber%3D5203886&authDecision=-201

Personposter BETA

Brax, ChristofferNiklasson, LarsLaxhammar, Rikard

Søk i DiVA

Av forfatter/redaktør
Brax, ChristofferNiklasson, LarsLaxhammar, Rikard
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 843 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf