his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Data Integration Method for Exploring Gene Regulatory Mechanisms
Högskolan i Skövde, Forskningscentrum för Systembiologi. Högskolan i Skövde, Institutionen för vård och natur.
Högskolan i Skövde, Forskningscentrum för Systembiologi. Högskolan i Skövde, Institutionen för vård och natur.
Högskolan i Skövde, Forskningscentrum för Systembiologi. Högskolan i Skövde, Institutionen för vård och natur.
2008 (engelsk)Inngår i: Conference on Information and Knowledge Management: Proceedings of the 2nd international workshop on Data and text mining in bioinformatics, ACM Press, 2008, s. 81-84Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Systems biology aims to understand the behavior of and interaction between various components of the living cell, such as genes, proteins, and metabolites. A large number of components are involved in these complex systems and the diversity of relationships between the components can be overwhelming, and there is therefore a need for analysis methods incorporating data integration. We here present a method for exploring gene regulatory mechanisms which integrates various types of data to assist the identification of important components in gene regulation mechanisms. By first analyzing gene expression data, a set of differentially expressed genes is selected. These genes are then further investigated by combining various types of biological information, such as clustering results, promoter sequences, binding sites, transcription factors and other previously published information regarding the selected genes. Inspired by Information Fusion research, we also mapped functions of the proposed method to the well-known OODA-model to facilitate application of this data integration method in other research communities. We have successfully applied the method to genes identified as differentially expressed in human embryonic stem cells at different stages of differentiation towards cardiac cells. We identified 15 novel motifs that may represent important binding sites in the cardiac cell linage.

sted, utgiver, år, opplag, sider
ACM Press, 2008. s. 81-84
Emneord [en]
Gene expression, gene regulation, motifs, data integration, data fusion
HSV kategori
Forskningsprogram
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:his:diva-3299DOI: 10.1145/1458449.1458468Scopus ID: 2-s2.0-70349235870ISBN: 978-1-60558-251-1 OAI: oai:DiVA.org:his-3299DiVA, id: diva2:227217
Konferanse
2nd international workshop on Data and text mining in bioinformatics
Tilgjengelig fra: 2009-07-10 Laget: 2009-07-10 Sist oppdatert: 2017-11-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttp://dl.acm.org/citation.cfm?id=1458468

Personposter BETA

Synnergren, JaneOlsson, BjörnGamalielsson, Jonas

Søk i DiVA

Av forfatter/redaktør
Synnergren, JaneOlsson, BjörnGamalielsson, Jonas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 923 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf