his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Explanation Methods for Bayesian Networks
Högskolan i Skövde, Institutionen för kommunikation och information.
2009 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 20 poäng / 30 hpOppgave
Abstract [en]

 

The international maritime industry is growing fast due to an increasing number of transportations over sea. In pace with this development, the maritime surveillance capacity must be expanded as well, in order to be able to handle the increasing numbers of hazardous cargo transports, attacks, piracy etc. In order to detect such events, anomaly detection methods and techniques can be used. Moreover, since surveillance systems process huge amounts of sensor data, anomaly detection techniques can be used to filter out or highlight interesting objects or situations to an operator. Making decisions upon large amounts of sensor data can be a challenging and demanding activity for the operator, not only due to the quantity of the data, but factors such as time pressure, high stress and uncertain information further aggravate the task. Bayesian networks can be used in order to detect anomalies in data and have, in contrast to many other opaque machine learning techniques, some important advantages. One of these advantages is the fact that it is possible for a user to understand and interpret the model, due to its graphical nature.

This thesis aims to investigate how the output from a Bayesian network can be explained to a user by first reviewing and presenting which methods exist and second, by making experiments. The experiments aim to investigate if two explanation methods can be used in order to give an explanation to the inferences made by a Bayesian network in order to support the operator’s situation awareness and decision making process when deployed in an anomaly detection problem in the maritime domain.

 

sted, utgiver, år, opplag, sider
2009. , s. 52
Emneord [en]
Explanation methods, Explanation Tree, Causal Explanation Tree, Bayesian networks, anomaly detection, information fusion, maritime situation awareness
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-3193OAI: oai:DiVA.org:his-3193DiVA, id: diva2:225212
Presentation
(engelsk)
Uppsök
Technology
Veileder
Examiner
Tilgjengelig fra: 2009-06-29 Laget: 2009-06-25 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltekst(631 kB)564 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 631 kBChecksum SHA-512
e65e5b4ed043894d7b5943782d7a6c043332adf8587ba4bb7976ef37d0b8eda36b3e4d8c1bcd37640bdd0063036c112bf68df5138c1c7ab0b918ad8afdd0cb27
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Helldin, Tove
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 564 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 691 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf