Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance
Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Iran.
Department of Crop Production and Plant Breeding, Shiraz University, Iran.
University of Skövde, School of Bioscience. University of Skövde, Systems Biology Research Environment. (Translationell bioinformatik, Translational Bioinformatics)ORCID iD: 0000-0003-1837-429X
Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran.
2022 (English)In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 255, no 5, article id 99Article in journal (Refereed) Published
Abstract [en]

MAIN CONCLUSION: Enhanced levels of endogenous melatonin in the root of wheat, mainly through the OMT1 gene, augment the antioxidant system, reestablish redox homeostasis and are associated with combined stress tolerance. A systems biology approach, including a collection of computational analyses and experimental assays, led us to uncover some aspects of a poorly understood phenomenon, namely wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Accordingly, a cross-study comparison of stress experiments was performed via a meta-analysis of Expressed Sequence Tags (ESTs) data from wheat roots to uncover the overlapping gene network of drought and salinity stresses. Identified differentially expressed genes were functionally annotated by gene ontology enrichment analysis and gene network analysis. Among those genes, O-methyl transferase 1 (OMT1) was highlighted as a more important (hub) gene in the dual-stress response gene network. Afterwards, the potential roles of OMT1 in mediating physiochemical indicators of stress tolerance were investigated in two wheat genotypes differing in abiotic stress tolerance. Regression analysis and correspondence analysis (CA) confirmed that the expression profiles of the OMT1 gene and variations in melatonin content, antioxidant enzyme activities, proline accumulation, H2O2 and malondialdehyde (MDA) contents are significantly associated with combined stress tolerance. These results reveal that the OMT1 gene may contribute to wheat combined drought and salinity stress tolerance through augmenting the antioxidant system and re-establishing redox homeostasis, probably via the regulation of melatonin biosynthesis as a master regulator molecule. Our findings provide new insights into the roles of melatonin in wheat combined drought and salinity stress tolerance and suggest a novel plausible regulatory node through the OMT1 gene to improve multiple-stress tolerant crops.

Place, publisher, year, edition, pages
Springer Nature Switzerland AG , 2022. Vol. 255, no 5, article id 99
Keywords [en]
Abiotic stress, Expressed sequence tags, Gene network, Melatonin, Meta-analysis
National Category
Bioinformatics and Systems Biology
Research subject
Bioinformatics
Identifiers
URN: urn:nbn:se:his:diva-21072DOI: 10.1007/s00425-022-03885-4ISI: 000778977800001PubMedID: 35386021Scopus ID: 2-s2.0-85127695780OAI: oai:DiVA.org:his-21072DiVA, id: diva2:1653220
Note

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.

Available from: 2022-04-21 Created: 2022-04-21 Last updated: 2022-10-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Lindlöf, Angelica

Search in DiVA

By author/editor
Lindlöf, Angelica
By organisation
School of BioscienceSystems Biology Research Environment
In the same journal
Planta
Bioinformatics and Systems Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 89 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf