Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cardiac hypertrophy in human stem cells-derived cardiomyocytes: Biomarker identification and pathway analysis of endotheline-1 induced cardiac hypertrophy in human induced pluripotent stem cells-derived cardiomyocytes
University of Skövde, School of Bioscience.
2020 (English)Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Cardiac hypertrophy is when heart muscles thicken as an adaptive response to several stimuli. Prolonged pathological cardiac hypertrophy can lead to heart failure and severe cardiovascular diseases. Scientists have faced challenges in studying cardiac hypertrophy due to the lack of human cardiomyocytes available. Recently, hypertrophic model using human induced pluripotent stem cell-derived cardiomyocytes was introduced. In this study, expression profiles of in vitroendothelin-1 induced cardiac hypertrophy model were investigated at different time points. The study aimed to examine molecular pathways associated with cardiac hypertrophy, identify biomarker candidates for cardiac hypertrophy, and investigate if there were known pharmaceuticals that putatively are targeting the suggested candidate biomarkers. Using the Ingenuity pathway analysis (IPA) software, GRM1, NPPA, and STC1 gene were identified as biomarker candidates for cardiac hypertrophy model across all time points. More biomarker candidates unique to the cardiac hypertrophy-stages were also identified using IPA. In vivomicroarray data of hypertrophied heart profiles were also used to compare to the in vitro data and preliminarily validate the gene candidates identified by IPA. Four genes were identified by IPA and were presented in the in vivo data. IPA also revealed the in activation of specific pathways of the early-stage cardiac hypertrophy model. The result suggested that the molecular mechanisms of the in vitro cardiac hypertrophy model did not fully represent the actual hypertrophic condition of the heart. More research and validation are required to understand the underlying mechanism fully and potentially, in the future, utilize the identified genes as cardiac hypertrophy biomarkers.

Place, publisher, year, edition, pages
2020. , p. 42
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:his:diva-18902OAI: oai:DiVA.org:his-18902DiVA, id: diva2:1457683
Subject / course
Bioscience
Educational program
Bioscience - Molecular Biodesign
Supervisors
Examiners
Available from: 2020-08-12 Created: 2020-08-12 Last updated: 2020-08-12Bibliographically approved

Open Access in DiVA

fulltext(1991 kB)255 downloads
File information
File name FULLTEXT01.pdfFile size 1991 kBChecksum SHA-512
cf81c21b841d0fc1ab06a3ec2bc3270ff728c2854f891a0170907a2262a4e084fc86452be6d28e8586aa1bfb896802980d10f59fa82420841bc5e50eb318d49b
Type fulltextMimetype application/pdf

By organisation
School of Bioscience
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
Total: 255 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 611 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf