Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Short-term solar irradiation forecasting based on Dynamic Harmonic Regression
Universidad de Castilla-La Mancha, Departamento de Administracion de Empresas, Ciudad Real, Spain.
Lancaster University, Department of Management Science, United Kingdom.ORCID-id: 0000-0003-0211-5218
Universidad de Castilla-La Mancha, Departamento de Administracion de Empresas, Ciudad Real, Spain.
2015 (Engelska)Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 84, s. 289-295Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1-24h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24h ahead. 

Ort, förlag, år, upplaga, sidor
Elsevier, 2015. Vol. 84, s. 289-295
Nyckelord [en]
Dynamic harmonic regression, Exponential smoothing, Forecasting, Solar irradiation, Unobserved components model, Automation, Frequency domain analysis, Frequency estimation, Harmonic analysis, Mean square error, Radiation, Regression analysis, Solar energy, Solar power generation, Solar radiation, Video signal processing, Automatic identification, Dynamic harmonic regressions, Forecasting performance, Root mean squared errors, Solar irradiance measurement, Unobserved components, Irradiation, electricity generation, error analysis, estimation method, solar power, weather station, Spain
Nationell ämneskategori
Sannolikhetsteori och statistik Energisystem Energiteknik
Identifikatorer
URN: urn:nbn:se:his:diva-18249DOI: 10.1016/j.energy.2015.02.100ISI: 000355035900028Scopus ID: 2-s2.0-84928429252OAI: oai:DiVA.org:his-18249DiVA, id: diva2:1402757
Tillgänglig från: 2020-02-28 Skapad: 2020-02-28 Senast uppdaterad: 2020-03-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Kourentzes, Nikolaos

Sök vidare i DiVA

Av författaren/redaktören
Kourentzes, Nikolaos
I samma tidskrift
Energy
Sannolikhetsteori och statistikEnergisystemEnergiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 113 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf