his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
INSIDe: Image recognition tool aimed at helping visually impaired people contextualize indoor environments
Federal University of Fronteira Sul, Brazil.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Federal University of Fronteira Sul, Brazil. (Interaction Lab (ILAB))ORCID-id: 0000-0001-6479-4856
Federal University of Fronteira Sul, Brazil.
Federal University of Rio Grande do Sul, Brazil.
2019 (engelsk)Inngår i: Revista Brasileira de Computação Aplicada, ISSN 2176-6649, Vol. 11, nr 3, s. 59-71Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Visually impaired (VI) people face a set of challenges when trying to orient and contextualize themselves. Computer vision and mobile devices can be valuable tools to help them improve their quality of life. This work presents a tool based on computer vision and image recognition to assist VI people to better contextualize themselves indoors. The tool works as follows: user takes a picture rho using a mobile application; rho is sent to the server; rho is compared to a database of previously taken pictures; server returns metadata of the database image that is most similar to rho; finally the mobile application gives an audio feedback based on the received metadata. Similarity test among database images and rho is based on the search of nearest neighbors in key points extracted from the images by SIFT descriptors. Three experiments are presented to support the feasibility of the tool. We believe our solution is a low cost, convenient approach that can leverage existing IT infrastructure, e.g. wireless networks, and does not require any physical adaptation in the environment where it will be used.

sted, utgiver, år, opplag, sider
UNIV PASSO FUNDO , 2019. Vol. 11, nr 3, s. 59-71
Emneord [en]
Android system, computer vision, SIFT, Visually impaired
HSV kategori
Forskningsprogram
Interaction Lab (ILAB)
Identifikatorer
URN: urn:nbn:se:his:diva-18024DOI: 10.5335/rbca.v11i3.9455ISI: 000493127600006OAI: oai:DiVA.org:his-18024DiVA, id: diva2:1380842
Tilgjengelig fra: 2019-12-19 Laget: 2019-12-19 Sist oppdatert: 2020-01-29bibliografisk kontrollert

Open Access i DiVA

fulltext(3777 kB)50 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 3777 kBChecksum SHA-512
d0864de1676813135fa38ac13457f32f91e16e37fdad1a6f0411fc6af88153d7c27965397c70945a9448d8b17d80606f31edd40d10b5e805bd5d05a84c37eb7c
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Bevilacqua, Fernando

Søk i DiVA

Av forfatter/redaktør
Bevilacqua, Fernando
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 50 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 112 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf